Every SEL Axion® node requires at least one SEL-2243 Power Coupler module. The SEL-2243 serves two purposes in an Axion system:

1. It is the power supply for all modules installed in the node, and;
2. It provides two dedicated EtherCAT® ports so that multiple Axion nodes can operate together.

Front Panel

The power coupler module uses the same power supply design that you would find in SEL protective relays. The Axion provides test-proven superior performance and availability, while also allowing for redundant power couplers in a node for applications that need these. If you install two power couplers in a node, both modules actively share load and provide the necessary power for node functions. If one SEL-2243 becomes unavailable, there is zero switching delay or power loss to the node.

EtherCAT Operation

Each SEL-2243 provides two dedicated ports for EtherCAT networks. The ports will either be standard 10/100BASE-T or optional 100BASE-FX Ethernet ports. EtherCAT is a real-time fieldbus protocol (see Appendix E in the ACSELERATOR RTAC SEL-5033 Instruction Manual) that we can use to connect an RTAC to I/O modules in an Axion system. If the installation has only one node, then the backplane transmits EtherCAT messages. Alternatively, if you use an SEL-3530 RTAC, or if you need more I/O than will fit in a node, then the ports on a power coupler module provide a mechanism for extending the EtherCAT network through the use of dedicated Ethernet wiring. Refer to EtherCAT in Section 2: Communications in the ACSELERATOR RTAC SEL-5033 Instruction Manual to learn more about configuring a network.

If an Axion node contains two SEL-2243 modules, then the EtherCAT ports in both power couplers will operate normally even if one power supply becomes unavailable. The remaining power supply will serve as the source for all I/O modules and communications needs.
Mechanical Installation

Each SEL-2242 chassis/backplane has ten slots, labeled A through J. Only slots A, B, and C support the SEL-2243 Power Coupler module.

To install the power coupler, tip the top of the module away from the chassis, align the notch on the bottom of the module (shown in Figure 2) with the slot you have selected in the chassis, and place the module on the bottom lip of the chassis (Figure 3). The module is aligned properly when it rests entirely on the lip of the chassis.

Next, carefully rotate the module into the chassis, making sure that the alignment pin fits into the corresponding slot at the top of the chassis (refer to Figure 4). Finally, press the module firmly into the chassis and tighten the chassis retaining screw.

Connections

Power

DANGER
Contact with this circuitry may cause electrical shock that can result in injury or death.

CAUTION
Capacitors should be safely discharged during decommissioning.

The power terminals on the high-voltage power coupler (1 (+/H) and 2 (–/N)) must connect to 120/240 Vac with the proper polarity or to 125/250 Vdc. The power terminals on the low-voltage power coupler (1 (+/H) and 2 (–/N)) must connect to 24/48 Vdc. The power terminals are isolated from the chassis ground. Use 16–14 AWG (1.5–2.5 mm²) wire of sufficient current capacity and insulation voltage ratings to connect to the power terminals.

Grounding (Earthing)

Connect the ground terminal labeled GND (3) on the power coupler to a rack frame or switchgear ground for proper safety and performance. Use 14 AWG (2.5 mm²) wire of sufficient current capacity and insulation voltage ratings that is less than 2 m (6.6 feet) in length for the ground connection.

EtherCAT Ports

NOTE: Always ensure that power couplers are not connected to any Ethernet switches or other Ethernet devices, including RJ45-to-fiber-optic converters. The power coupler EtherCAT ports are only for direct connections between power couplers of the same type or to an RTAC EtherCAT port. Connecting a power coupler to any other Ethernet device can cause the EtherCAT network to stop communicating completely or have unpredictable behavior.
The SEL-2243 includes two 10/100BASE-T or 100BASE-FX Ethernet ports dedicated for EtherCAT protocol. Use a standard RJ45 connector for a copper port and an LC connector for a fiber-optic port to connect PORT 1 or PORT 2 of the module. Make each connection by using a direct cable to the next device. Use SEL cable SEL-C627 with copper ports.

Buttons and LEDs

Each power coupler includes a LAMP TEST button useful for system testing. When depressed, all module LEDs on the terminal side and front panel (rack mount only) will illuminate.

Specifications

Compliance

- Designed and manufactured under an ISO 9001 certified quality management system
- UL Listed to U.S. and Canadian safety standards (File NRAQ, NRAQ7 per UL508, and C22.2 No. 14)
- CE Mark

General

Operating Temperature Range

- –40° to +85°C (–40° to +185°F)
- Note: Not applicable to UL applications.

Operating Environment

- Pollution Degree: 2
- Overvoltage Category: II
- Insulation Class: 1
- Relative Humidity: 5%–95%, noncondensing
- Maximum Altitude: 2000 m

EtherCAT Ports

- Ports: 2
- Data Rate: Automatic
- Connector: RJ45 Female or LC Fiber
- Protocols: Dedicated EtherCAT

Fiber-Optic Ports (Class 1 LASER/LED)

- Wavelength: 1300 nm
- Optical Connector Type: LC
- Multimode Option
 - Link Budget: 11 dB
 - Min. TX Power: –20 dBm
 - Min. RX Sensitivity: –31 dBm
 - Fiber Size: 50–200 µm
 - Approximate Range: 2 km
 - Data Rate: 100 Mbps
 - Typical Fiber Attenuation: –2 dB/km

Single-Mode Option

- Link Budget: 10 dB
- Min. TX Power: –15 dBm
- Min. RX Sensitivity: –25 dBm
- Fiber Size: 9 µm
- Approximate Range: 15 km
- Data Rate: 100 Mbps
- Typical Fiber Attenuation: –0.4 dB/km

Power Supply

AC Input Voltage (High-Voltage Model)

- Nominal Supply Voltage: 120–240 Vac, 50–60 Hz
- Operational Voltage Range: 85–264 Vac, 40–70 Hz

DC Input Voltage (High-Voltage Model)

- Nominal Supply Voltage: 125–250 Vdc
- Operational Voltage Range: 85–300 Vdc

DC Input Voltage (Low-Voltage Model)

- Nominal Supply Voltage: 24–48 Vdc
- Operational Voltage Range: 19.1–57.6 Vdc polarity dependent

Fuse Rating

- High-Voltage Model: 3.15 A, high breaking capacity, time lag T, 250 V (5x20 mm, T3.15AH 250 V)
- Low-Voltage Model: 6.30 A, high breaking capacity, time lag T, 250 V (5x20 mm, T6.3AH 250 V)

Power Consumption

- Maximum AC Burden: 160 VA
- Maximum DC Burden: 75 W

Interruptions

- 30 ms @ 24 Vdc
- 130 ms @ 48 Vdc
- 50 ms @ 125 Vac/Vdc
- 100 ms @ 250 Vac/Vdc

Max Inrush

- 15 A

Isolation

- 3100 Vdc
Redundant Installation

Each node may have one or two SEL-2243 modules installed. When two are used, they operate in load sharing mode.

Type Tests

Communication Product Testing

IEEE 1613-2009 + A1-2011 Performance Class 1

Environmental Tests

IP3X excluding the terminal blocks
Vibration Endurance, Severity: Class 2
Vibration Response, Severity: Class 1
Bump Test, Severity: Class 1
Shock Withstand, Severity: Class 1
Shock Response, Severity: Class 1
Seismic: IEC 60255-21-3:1993
Quake Response, Severity: Class 1
Cold: IEC 60068-2-1:2007
~40°C, 16 hours
+85°C, 16 hours
Damp Heat, Cyclic: IEC 60068-2-30:2005
25°C to 55°C, 6 cycles,
95% relative humidity

Dielectric Strength and Impulse Tests

Impulse: IEC 60255-5:2000
Severity Level: 0.5 Joule, 5 kV
IEEE C37.90-2005
Severity Level: 0.5 Joule, 5 kV
Dielectric (HiPot): IEC 60255-5:2000
Severity Level: 3100 Vdc on power supply for 1 minute
IEEE C37.90-2005
Severity Level: 3100 Vdc on power supply for 1 minute
Insulation: IEC 60255-5:2000
Severity Level: 500 V for greater than 1 minute

RFI and Interference Tests

EMC Immunity
Electrostatic Discharge Immunity:
IEEE C37.90-3:2001
IEEE 60255-22-2:2008
IEEE 61000-4-2:2008
Severity Level: 4
8 kV contact discharge
15 kV air discharge
Radiated RF Immunity:
IEEE C37.90-2.2:2004
Severity Level: 35 V/m
IEC 61000-4-3:2010
Severity Level: 10 V/m
IEC 60255-22-3:2007
Severity Level: 10 V/m
Digital Radio Telephone
RF Immunity:
EN 50204:1995 Severity Level: 10 V/m
at 900 MHz and 1.89 GHz
Conducted RF Immunity:
IEC 60255-22-6:2001
Severity Level: 10 Vrms
IEC 61000-4-6:2008
Severity Level: 10 Vrms
Surge Immunity:
IEC 60255-22-5:2008
Severity Level: 1 kV Line to Line,
2 kV Line-to-Earth
IEC 61000-4-5:2005
Severity Level: 1 kV Line to Line,
2 kV Line-to-Earth
Fast Transient, Burst Immunity:
IEC 60255-22-4:2008
Severity Level: Class A: 4 kV, 5 kHz;
2 kV, 5 kHz on communications ports
IEC 61000-4-4:2011
Severity Level: 4 kV, 5 kHz
Power Supply Immunity:
IEC 61000-4-11:2004
IEC 61000-4-29:2000
IEC 60255-11:2008
Magnetic Field Immunity:
IEC 61000-4-8:2009
Severity Level: 1000 A/m for 3 seconds,
100 A/m for 1 minute
IEC 61000-4-10:2001
Severity Level: 100 A/m
Surge Withstand Capability Immunity:
IEEE C37.90.1-2002,
2.5 kV oscillatory, 4 kV fast transient
IEC 60255-22-1:2007
2.5 kV common-mode
1.0 kV differential-mode (cable length < 2 m for RJ45 power couplers)
Oscillatory Waves Immunity:
IEC 61000-4-12:2006
Ring Wave: 2 kV common,
1.0 kV differential
Oscillatory: 2.5 kV common,
1.0 kV differential
Common Mode Disturbance Immunity:
IEC 61000-4-16:2002
Frequency: 0 to 150 Hz
Severity: Level 4, segment 4: 30 Vrms
open-circuit, 15 to 150 kHz

Emissions