The SEL-2488 Satellite-Synchronized Network Clock receives Global Navigation Satellite System (GNSS) time signals and distributes precise time via multiple output protocols, including IRIG-B, Precision Time Protocol (PTP), as defined by IEEE 1588, and Network Time Protocol (NTP). The advanced capabilities of the SEL-2488 make it well suited for demanding applications like synchrophasors and for substations with multiple time synchronization requirements.

➤ **Precise Time Accuracy Meets Demanding Requirements.** Provides demodulated IRIG-B time output for protection applications, synchronizing relays, phasor measurement units (PMUs), and other intelligent electronic devices (IEDs) to within ±40 ns average and ±100 ns peak accuracy to coordinated universal time (UTC). The SEL-2488 can act as a stratum 1 time server with typical client synchronization accuracy on a LAN of 0.5–2 ms. With purchase of the PTP option, the SEL-2488 can act as a PTP Grandmaster Clock with Default and Power System profiles providing ±100 ns peak time stamp accuracy to UTC.

➤ **Holdover Oscillator Maintains Accuracy if GPS is Unavailable.** Maintains average accuracy of 36 µs for 24 hours at constant temperature with standard Temperature Compensated Crystal Oscillator (TCXO) holdover. With optional Oven Controlled Crystal Oscillator (OCXO) holdover, average accuracy improves to 5 µs for 24 hours at constant or varied temperature.

➤ **Thirteen Standard Outputs Provide Flexible Time Distribution.** Distributes time from eight time BNC outputs plus one DB-9 output, all configurable for IRIG-B or time pulse outputs. The DB-9 port can be used with SEL-2812 Fiber-Optic Transceivers to send IRIG-B long distances over fiber-optic cable. The SEL-2488 also includes four standard Ethernet ports, which provide NTPv4. With purchase of the PTP option, the SEL-2488 can act as a PTP Grandmaster Clock with Default and Power System profiles. The SEL-2488 distributes NTP and PTP to four independent networks, and Ethernet ports are available in copper as well as single- or multimode fiber orderable in pairs.

➤ **Dual Power Supplies Offer Redundancy.** Provides an option for a second power supply that can receive power from a second source. SEL-9330A power supplies support 125–250 Vdc or Vac input, and SEL-9330C power supplies use 24–48 Vdc.

➤ **Satellite Signal Verification Provides Assurance.** Receives signals from both GPS and GLONASS satellite systems for verification to provide a level of protection from GPS spoofing attacks.

➤ **DHCP, LDAP, SNMP, and Syslog Support Ensure Easy and Secure Integration.** Makes commissioning, management, and monitoring faster and more secure with DHCP captive portal, LDAP authentication, SNMP read and trap support, and syslog event messaging.

➤ **PRP with Dual Attached Node Support Provides Network Redundancy.** Connects directly to both LANs in a PRP network without a PRP Redbox. The SEL-2488 complies with IEC 62439-3:2016 standard.

➤ **Ruggedness Provides Reliability in Harsh Environments.** Operates reliably between −40° and +85°C (−40° to +185°F), and complies with IEEE 1613, IEC 61850-3, and IEC 60255 standards.

➤ **Easy-to-Use Interface Streamlines Device Management.** The intuitive SEL-2488 HTTPS device webpage with SkyView™ simplifies configuration, management, and troubleshooting.
Functional Overview

The SEL-2488 raises the bar for satellite-synchronized clocks by providing higher levels of accuracy, flexibility, dependability, and ease of use, all while providing advanced capabilities that make it especially well suited for critical infrastructure applications.

Standard Features

➤ Average accuracy of ±40 ns to UTC, peak accuracy of ±100 ns to UTC for demodulated IRIG-B and pulse outputs
➤ Time sources used: GPS, GLONASS for satellite signal verification
➤ Typical NTP time-stamp accuracy <100 µs
➤ Peak PTP time-stamp accuracy of ±100 ns to UTC
➤ Peak accuracy of ±1 µs to UTC for modulated IRIG-B
➤ Standard TCXO holdover with 36 µs average timing error after 24 hours at constant temperature
➤ Optional OCXO holdover with 5 µs average timing error after 24 hours at constant temperature
➤ Eight rear BNC ports for demodulated IRIG-B, PPS, or kPPS, and as many as four ports for modulated IRIG-B
➤ Four Ethernet ports can serve NTPv4 and PTP to four independent networks
➤ One Form A solid-state contact output can provide a single contact closure or a repeating contact closure of configurable closure duration and period
➤ One Form C mechanical alarm contact notifies users of a major or minor event
➤ One standard power supply: 24–48 Vdc or 125–250 Vdc or Vac, optional second supply
➤ Satellite signal verification with SEL-9524B GPS/GLONASS GNSS Antenna
➤ LCD multi-information display plus LEDs for status
➤ HTTPS Web interface with SkyView, support for DHCP, LDAP, Syslog, SNMP read and traps, and ACSELERATOR QuickSet® SEL-5030 Software
➤ Standard SEL 10-year warranty

Applications

Time Synchronization of Substations

The SEL-2488 has eight BNC ports, which can be configured for demodulated IRIG-B, time pulse, or modulated IRIG-B (as many as four ports). Demodulated IRIG-B provides time output for protection applications, synchronizing relays, phasor measurement units, and other intelligent electronic devices (IEDs) to within ±40 ns average accuracy to UTC. Time synchronization is also essential for sequence of events recording, disturbance recording, and power system fault location.
Modulated IRIG-B can be configured for as many as four BNC outputs for synchronizing legacy devices. The DB-9 port can be used with SEL-3405 High Accuracy IRIG-B Fiber-Optic Transceivers to send IRIG-B long distances over fiber-optic cable.

Ethernet ports can use NTP to distribute time to devices on the substation local-area network (LAN), such as servers, computers, and other devices that set their time through NTP or the Simple Network Time Protocol (SNTP). The SEL-2488 can serve NTP to four independent networks. The SEL-2488 can act as a stratum 1 time server with typical client synchronization accuracy to the SEL-2488 NTP server on a LAN of 0.5–2 ms. With syslog support, all SEL-2488 event information, including diagnostic and status events, is available over Ethernet in a standardized format.

The SEL-2488 Ethernet ports support hardware time stamping, enabling support of the Precision Time Protocol, PTP, defined by IEEE 1588, with purchase of a firmware upgrade.

Figure 2 Functional Diagram for Utility Substation Time Synchronization

**GNSS Vulnerability Mitigation**

If GNSS time signals become unavailable as a result of solar flares, jamming, or an antenna failure, the SEL-2488 clock switches its time source to the standard TCXO holdover, with 36 µs/day accuracy, or to the optional OCXO holdover, with 5 µs/day accuracy. (Both of these holdover accuracy specifications are based on a constant temperature). In the case of a GPS spoofing attack, in which a satellite system receiver locks to a counterfeit signal, the SEL-2488 Satellite-Synchronized Network Clock and SEL-9524B GPS/GLONASS GNSS Antenna use signals from the GLONASS Satellite constellation to validate GPS signals and identify mismatches in timing information caused by these attacks.

**Cable Delay Compensation**

The SEL-2488 preserves accuracy by providing time-delay compensation for antenna cables and output cables on a per-port basis with demodulated IRIG-B and pulse outputs.

The cable delay compensation of the SEL-2488 Clock ensures high-accuracy time distribution in large facilities with dispersed IEDs or in installations where antennas must be mounted high on towers. The SEL-2488 supports as long as 500 feet of LMR-400 cable for an antenna and as long as 500 feet of RG-58 for the output cable.

*Figure 4 shows an example of a clock with an antenna and two output ports. One output port is configured for 30 ns of cable delay compensation, and another is configured for 180 ns. This difference in delay compensation accounts for the 100-foot difference in output cable length.*

*Figure 3 SEL-2488 Satellite Signal Verification*
Configuration

HTTPS Device Webpage

The SEL-2488 supports DHCP captive portal for an easy initial connection to the device webpage for configuration. Secure access is controlled through X.509 certificates, user-based accounts, LDAP authentication, and complex passwords. The SEL device webpage includes a dashboard display of satellite signals for both GPS and GLONASS satellites. Bar charts indicate signal strengths, and the SkyView displays the present satellite overhead positions, useful information for troubleshooting potential signal and antenna installation issues.

ACSELERATOR QuickSet

ACSELERATOR QuickSet can be used for secure configuration of the SEL-2488. ACSELERATOR QuickSet is an easy-to-use, powerful tool with template design capabilities for consistent configuration of settings across multiple devices.
Front- and Rear-Panel Diagrams

![Diagram of SEL-2488 Front and Rear Panels]

Figure 7  SEL-2488 Front and Rear Panels

Dimensions

![Diagram of SEL-2488 Dimensions (Rack-Mount Chassis)]

Figure 8  SEL-2488 Dimensions (Rack-Mount Chassis)
Specifications

Compliance
Designed and manufactured under an ISO 9001 certified quality management system
47 CFR 15B, Class A
UL Recognized to U.S. and Canadian safety standards
(File E231500; NWGQ2, NWGQ8)
CE Mark

General
Receiver
Satellite Tracking: GPS L1, C/A Code (1575.42 MHz), GLONASS L1 (1602 MHz), track as many as 16 satellites for each constellation

Acquisition Times
Warm Start: 240 s (with saved almanac data)
Cold Start: 240 s + UTC compensation time (as many as 12.5 minutes)

Clock Accuracy (to UTC)
1 PPS: ±40 ns average, ±100 ns peak
Demodulated IRIG-B: ±40 ns average, ±100 ns peak
Modulated IRIG-B: ±1 μs peak
PTP Time-Stamp Accuracy: ±100 ns peak
NTP Time-Stamp Accuracy (Typical): <100 μs
Typical client synchronization accuracy to the SEL-2488 NTP server on a LAN is 0.5–2 ms. Actual accuracy depends on network conditions.

Holdover Accuracy (Typical)
TCXO: 36 μs per day (constant temp)
OCXO (after 24 hours of continuous operation): 5 μs per day (constant temp) 5 μs per day (±1°C)

Antenna Requirements
5 V, <80 mA
≥32 dB preamp

Electrical Output Drive Levels
Demodulated IRIG-B/PPS, TTL (OUT1–OUT8): 5 V, 250 mA max
Modulated IRIG-B, (OUT1–OUT4): 6.2 Vpp nominal
DB-9 Port IRIG-B output, TTL (Pin 4/Pin 6): 5 Vdc, 5 mA

Operating Environment
Pollution Degree: 2
Overvoltage Category: II

Dimensions
1U Rack Mount
Height: 42.9 mm (1.69 inches)
Depth: 232.1 mm (9.14 inches)
Width: 482.5 mm (19.0 inches)

Weight
1.96 kg (4.3 lb)

Warranty
10 years

Network Management
HTTPS Web User Interface
ACSELERATOR QuickSet® SEL-5030 Software
Settings Import/Export

User-Based Accounts
Maximum Local Accounts: 256
Password Length: 1–72 characters
Password Set: All printable ASCII characters
User Roles: Administrator, Engineer, User Manager, Monitor

Syslog
Storage for 60,000 local syslog messages
Support for three remote syslog destinations

SNMP
Monitors diagnostics through SNMP v2c and v3 read operations
Sends notifications using SNMP v2c traps
Support for as many as three trap servers

PRP
Operates as dual attached node device in a PRP network
Implements IEC 62439-3:2016
PTP disabled on PRP ports when PRP is enabled

Communications Ports
Ethernet Ports
Ports: 4 rear, 1 front
Data Rate: 10 or 100 Mbps
Front Connector: RJ45 Female
Rear Connectors: RJ45 Female or LC Fiber (single-mode or multimode)
Standard: IEEE 802.3

Fiber-Optic Ports
Multimode Option (to 2 km)
Maximum TX Power: –14 dBm
Minimum TX Power: –20 dBm
RX Sensitivity: –31 dBm
System Gain: 11 dB
Source: LED
Wavelength: 1310 nm
Connector Type: LC (IEC 61754-20)

Single-Mode Option (to 15 km)
Maximum TX Power: –8 dBm
Minimum TX Power: –15 dBm
RX Sensitivity: –28 dBm
System Gain: 13 dB
Source: Laser
Wavelength: 1310 nm
Connector Type: LC (IEC 61754-20)

Alarm Output
Rated Operational Voltage: 24–250 Vdc
Contact Protection: 270 Vdc, MOV protected
Continuous Carry: 2 A
Pickup Time: ≤8 ms typical
Dropout Time: ≤8 ms typical

**Timing Output**
- Rated Operational Voltage: 12–250 Vdc
- Contact Protection: 330 Vdc (250 Vac), MOV protected
- Continuous Carry: 100 mA
- Off Resistance: 5 MΩ
- Minimum Voltage: 12 Vdc
- Timing Accuracy (Closing): ±1 µs (applies only to dc voltages)

**Power Supply**
- 125/250 Volt Power Supply
  - Rated Supply Voltage: 125–250 Vdc, 110–240 Vac, 50/60 Hz
  - Input Voltage Range: 88–300 Vdc or 85–264 Vac
  - Power Consumption: AC: <60 VA
  - DC: <45 W
  - Input Voltage Intermittions: 50 ms @ 125 Vac/Vdc
  - Input Voltage Interruptions: 100 ms @ 250 Vac/Vdc
- 24/48 Volt Power Supply
  - Rated Supply Voltage: 24–48 Vdc (polarized)
  - Input Voltage Range: 19.2–57.6 Vdc
  - Power Consumption: <45 W
  - Input Voltage Intermittions: 50 ms @ 48 Vdc

**External Overcurrent Protection**
- Breaker Type: Standard
- Breaker Rating: 20 A at 250 Vdc
- Current Breaking Capacity: 10 kA
- Grounded Neutral Systems: Device in series with the HOT or energized conductor
- DC and Isolated Systems: Device in series with both conductors

**Environmental**

**Temperature**
- Operating: −40° to +85°C (~−40° to +185°F)
- Non-operating: −40° to +85°C (~−40° to +185°F)

**Relative Humidity**
0 to 95% noncondensing

**Altitude**
2000 m

**Type Tests**

**Communication Product Testing**
- Communications for Substation Equipment: IEEE 1613-2009
- Power Frequency Disturbances: IEC 61850-3:2002; Section 5.7.3

**Electromagnetic Compatibility General**
- Measuring Relays and Protection Equipment: IEC 60255-26:2013

**Electromagnetic Compatibility Emissions**
- Conducted RF Emissions: IEC 60255-26:2005
- Telecom Conducted RF Emissions: EN 55022:2010

**Electromagnetic Compatibility Immunity**
- Conducted RF Immunity: IEC 60255-22-6:2001
- Power Frequency Magnetic Field Immunity: IEC 60255-4-9:2001
- Pulse Magnetic Field Immunity: IEC 60255-4-10:2001
- Damped Oscillatory Magnetic Field Immunity: IEC 60255-4-11:2001
### Environmental

<table>
<thead>
<tr>
<th>Condition</th>
<th>Standard</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>IEC 60068-2-1:2007</td>
<td>-40°C for 16 hours</td>
</tr>
<tr>
<td>Damp Heat, Cyclic</td>
<td>IEC 60068-2-30:2005</td>
<td>25°C to 55°C, 6 cycles, relative humidity: 95%</td>
</tr>
<tr>
<td>Dry Heat</td>
<td>IEC 60068-2-2:2007</td>
<td>+85°C for 16 hours</td>
</tr>
<tr>
<td>Free Fall</td>
<td>IEEE 1613-2009</td>
<td>100 mm</td>
</tr>
<tr>
<td>Vibration</td>
<td>IEC 60255-21-1:1988</td>
<td>Class 2 Endurance, Class 2 Response</td>
</tr>
<tr>
<td>Shock &amp; Bump</td>
<td>IEC 60255-21-2:1988</td>
<td>Class 1 Shock Withstand, Class 1 Bump, Class 2 Shock Response</td>
</tr>
<tr>
<td>Seismic</td>
<td>IEC 60255-21-3:1993</td>
<td>Class 2 (Quake Response)</td>
</tr>
</tbody>
</table>

### Safety

<table>
<thead>
<tr>
<th>Category</th>
<th>Standard</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Relays and</td>
<td>IEC 60255-27:2013</td>
<td></td>
</tr>
<tr>
<td>Protection Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection IP Code</td>
<td>IEC 60529:2001</td>
<td>IP Code: IP3X for category 2 equipment</td>
</tr>
<tr>
<td>Insulation Coordination</td>
<td>IEC 60255-5:2000</td>
<td></td>
</tr>
<tr>
<td>Dielectric (HiPot) Severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td>3100 Vdc</td>
</tr>
<tr>
<td>Alarm Contact</td>
<td></td>
<td>2500 Vac</td>
</tr>
<tr>
<td>IRIG-B Input</td>
<td></td>
<td>2100 Vdc</td>
</tr>
<tr>
<td>Ethernet Ports</td>
<td></td>
<td>1500 Vac</td>
</tr>
<tr>
<td>Timer Contact (OUT1)</td>
<td></td>
<td>3500 Vdc</td>
</tr>
<tr>
<td>Impulse Severity Level</td>
<td></td>
<td>5 J; ±5 kV; 1.2/50 µs</td>
</tr>
</tbody>
</table>

**SEL-2488 Data Sheet Date Code 20170711**