Fiber-Optic Transceivers for Serial Data and IRIG-B Time Signals

Major Features and Benefits

The SEL-2812 Fiber-Optic Transceivers provide isolation from dangerous ground potential rise, prevent induced electrical noise, and eliminate signal ground loops. The elimination of electrical interfaces made possible by this product increases safety, robustness, and reliability. These transceivers are suitable for use in the harsh environment of electrical substations.

➤ Easy Application. SEL fiber-optic products are simple to install. Plug an SEL-2812 Transceiver into a standard 9-pin serial connector (DB-9). No special mounting is required.

➤ Port Powered. The SEL-2812 Transceivers are powered from the host device via the connector. They do not require a separate power supply or wiring.

➤ Improved Safety. SEL fiber-optic products provide isolation from induced voltages resulting from ground potential rise and electromagnetic induction commonly caused by control cables.

➤ Increased Data Transfer Reliability. SEL-2812 Transceivers are far less susceptible than copper links to EMI/RFI and can therefore be applied in harsh electrical and physical environments.
Product Overview

Configuring an SEL-2812 link requires a duplex fiber-optic connection between the SEL-2812T and the SEL-2812R. The transmit port, TX, of the SEL-2812T sends serial communication and IRIG-B time synchronization signals to the receive port, RX, of the SEL-2812R. The transmit port, TX, of the SEL-2812R sends serial communications to the receive port, RX, of the SEL-2812T.

IRIG-B Selection Switch

An IRIG-B output selection switch is available on the SEL-2812R. When the switch is in the 232 position, separate output circuits direct the IRIG-B output signal to Pins 4 and 6 of the DB-9 connector as well as the J1 output. When the switch is in the J1 position, Pins 4 and 6 of the DB-9 connector are unterminated and the IRIG-B signal is available on J1 located on the side of the transceiver. Similarly, the SEL-2812T also includes an IRIG-B input selection switch. When the switch is in the 232 position, the transceiver draws the IRIG-B input signal from Pins 4 and 6 of the DB-9 connector. When the switch is in the J1 position, the transceiver draws the IRIG-B signal from J1, located on the side of the transceiver.

Power, Transmit, and Receive LED Indicators

The EN LED illuminates green when the minimum required power is applied to Pin 1 and Pin 3 or Pin 7 of the DB-9 serial port. The TX and RX LEDs illuminate green whenever the transmit or receive signals of the SEL-2812 fiber-optic transceiver are high to help verify the function of the transceiver product.

Application Examples

SEL Information Processors to SEL IED Devices

Use an SEL-2812T for each IED port on an SEL information processor. Use a duplex fiber-optic cable to connect each SEL-2812T to an SEL-2812R mounted on each relay or processor. The information processor communicates with interleaved ASCII and binary messages over the full-duplex serial link, using the same fibers that are also synchronizing the device clocks with simplex IRIG-B signals.

If required, connect an SEL-C654 adapter cable between the IRIG-B output from the SEL-2812R to the IRIG-B BNC input of the remote device.
SEL Relays and MIRRORED BITS Protection

Connect SEL-2812T Fiber-Optic Transceivers to the serial ports of a relay. Use SEL MIRRORED BITS® communications for high-speed exchange of protection information. Coordinate protection between generating plants and associated switchyards or among multiple control houses in the same station. Transfer to backup protection based on loss of potential or failures detected by diagnostic tests. Keep the dc circuits segregated between cabinets. Provide directional element-based bus protection.

Application Information

Determining Maximum Cable Length

The optical power budget includes transmit and receive connector coupling loss, so you can determine the maximum cable length by dividing the total optical power budget (16 dB) by the typical fiber loss/km specification (as shown in Table 1). To calculate the maximum cable length for your application, first ask your fiber cable supplier for fiber loss/km and connector/splice loss specifications (over the expected temperature range) based on an 850 nm wavelength optical source. Calculate the available optical power budget by subtracting the total connector/splice attenuation from the power budget specification shown in Table 1. Divide the available optical power budget by the fiber loss/km specification to determine the maximum cable length.

Intrastation Example

Intrastation applications are typically very simple and consist of two fiber-optic devices connected by a patch cord. The primary benefit of an intrastation application is the replacement of metallic cables between two EIA-232 devices. Fiber-optic transceivers also allow application of EIA-232 connections longer than the specified 50-foot limitation.

Intrastation Example

Figure 2 Information Processor to IED Device Example

Figure 3 MIRRORED BITS Communications Example

Table 1 Typical Cable Length

<table>
<thead>
<tr>
<th>Fiber Diameter (µm)</th>
<th>Power Budget (~40°C to +85°C) (dB)</th>
<th>Typical Fiber Loss at 25°C (dB/km)</th>
<th>Maximum Cable Length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>16</td>
<td>2.7</td>
<td>5.9</td>
</tr>
<tr>
<td>62.5</td>
<td>16</td>
<td>3.2</td>
<td>5</td>
</tr>
<tr>
<td>200</td>
<td>16</td>
<td>6.5</td>
<td>2.46</td>
</tr>
</tbody>
</table>
To calculate the viability of an intrastation system that is 0.5 km (1640 ft) long and configured as shown in Figure 4, perform the following steps:

Step 1. Calculate the fiber attenuation:

\[
\text{Cable attenuation for 850 nm} = 3.0 \text{ dB/km} \\
0.5 \text{ km} \times 3.0 \text{ dB} = 1.5 \text{ dB}
\]

Step 2. Subtract the total losses from the system gain:

\[
16 \text{ dB} - 1.5 \text{ dB} = 14.5 \text{ dB} \\
(\text{system gain} - \text{fiber loss} = \text{system margin})
\]

If the fiber loss adds as much as 16 dB or greater, the system is not viable.

Interstation Example

Interstation configurations are more complex than those for intrastation applications. The extra equipment and cables are associated with the termination of the interstation fiber cable. These cables typically contain as many as 24 separate fibers. These separate fibers are not suitable for use as patch cords or for direct termination to the fiber transceiver. A cable termination shelf is used to splice the fibers from the cable to a fiber pigtail. A fiber pigtail is a simplex fiber with a bare fiber on one end and a connector on the other end (the example shown in Figure 5 uses ST connectors). The fiber pigtail connects to one side of a bulkhead connector that attaches to a patch panel or distribution panel. The SEL transceiver is terminated to the fiber cable at the patch panel through use of a fiber patch cord of suitable length. The additional components in an interstation configuration beyond what exists in an intrastation application complicate calculation of system loss. All of these extra components have additional associated losses.

To calculate the viability of an interstation system that is 4 km (2.5 mi) long and configured as shown in Figure 5, perform the following steps:

Step 1. Calculate the fiber attenuation (refer to the typical values shown in Table 2):

\[
\text{Cable attenuation for 850 nm} = 3.0 \text{ dB/km} \\
4 \text{ km} \times 3.0 \text{ dB/km} = 12 \text{ dB}
\]

Table 2 Typical Attenuation Values

<table>
<thead>
<tr>
<th>Type</th>
<th>Loss for Multimode Fiber (50 µm)</th>
<th>Loss for Multimode Fiber (62.5 µm)</th>
<th>Loss for Multimode Fiber (200 µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Splice</td>
<td>0.2 dB</td>
<td>0.2 dB</td>
<td>0.2 dB</td>
</tr>
<tr>
<td>Mechanical Splice</td>
<td>0.4 dB</td>
<td>0.4 dB</td>
<td>0.4 dB</td>
</tr>
<tr>
<td>Connector Loss</td>
<td>0.75 dB</td>
<td>0.75 dB</td>
<td>0.75 dB</td>
</tr>
<tr>
<td>Per km @ 850 nm</td>
<td>2.5–3.0 dB</td>
<td>3.0–4.0 dB</td>
<td>7.4 dB</td>
</tr>
<tr>
<td>Per km @ 1300 nm</td>
<td>0.8–1.0 dB</td>
<td>1.0–2.0 dB</td>
<td>0.4 dB</td>
</tr>
<tr>
<td>Per km @ 1550 nm</td>
<td>N/A</td>
<td>N/A</td>
<td>0.25 dB</td>
</tr>
</tbody>
</table>
Step 2. Add the splice losses.
Splice attenuation (fusion)
3 splices • 0.2 dB = 0.6 dB

Step 3. Add the connector losses (connectors on the transceiver are included in the system gain).
Connector loss = 0.75 dB per connector
2 connectors • 0.75 dB = 1.5 dB

Step 4. Sum the losses.
12 dB + 0.6 dB + 1.5 dB = 14.1 dB
(fiber + splices + connectors = system loss)

Step 5. Subtract the total losses from the system gain.
16 dB – 14.1 dB = 1.9 dB
(system gain – system loss = system margin)
The system margin is positive, so the system is viable.

Conformal Coating Option

Order the SEL-2812 with optional conformal coating for additional protection against environmental and chemical contaminants.

IRIG-B Adapter Cables

The SEL-2812 includes a miniature phone jack (mono jack), J1, to connect an IRIG-B signal to IEDs that do not accept the IRIG-B signal on Pins 4 and 6 of the DB-9 connector. Both the SEL-2812 IRIG-B transmitter and receiver versions include this jack. Use SEL adapter cables SEL-C654, SEL-C655, and SEL-C656 as follows when applying the SEL-2812 to IEDs that do not use Pins 4 and 6 for the IRIG-B signals.

- SEL-C654: Mono plug to BNC
- SEL-C655: Mono plug to DB-9 (Pins 2 and 3)
- SEL-C656: Mono plug to ring terminal

Depth-Restricted Adapter Cables

When mounting depth is an issue, such as in switchgear applications, use an SEL-C780, SEL-C641, or SEL-C641R adapter cable. The SEL-C780 is a 6-inch ribbon cable that allows for mounting of the fiber transceiver at a 90-degree angle to the mating DB-9 host connector. The SEL-C641 (shielded) and SEL-C641R (double-shielded with metal connector housings) cables are configurable in length and allow for mounting of the SEL-2812 Transceiver as far as 1.8 m (6.0 ft) away from the DB-9 host connector.

- SEL-C780: 15.24 cm (6.00 in), low-profile adapter cable, DB-9 male to DB-9 female
- SEL-C641: 0.3 to 1.8 m (1.0 to 6.0 ft) shielded adapter cable, DB-9 male to DB-9 female
- SEL-C641R: 0.3 to 1.8 m (1.0 to 6.0 ft) double-shielded adapter cable, DB-9 male to DB-9 female

Safety Information

⚠️ **CAUTION**
To ensure proper safety and operation, the equipment ratings and installation instructions must be checked before commissioning or maintenance of the equipment. It is the responsibility of the user to ensure that the equipment is installed, operated, and used for its intended function in the manner specified in this data sheet. If misused, any safety protection provided by the equipment may be impaired.

Fiber-Optic Port

The SEL-2812 uses an 850 nm vertical cavity surface emitting laser (VCSEL) transmitter. When working with this device, observe the following safety precautions:

- Do not look into the fiber (laser) ports/connectors.
- Do not look into the end of an optical cable connected to an optical output.
- Do not perform any procedures or adjustments that this data sheet does not describe.
- During installation, maintenance, or testing of the optical ports, use only test equipment qualified for Class 1 laser products.
- Incorporated components, such as transceivers and laser emitters, are not user serviceable. Return units to SEL for repair or replacement.

Power Requirements

⚠️ **CAUTION**
SEL fiber-optic transceivers have combinations of input/output pins jumpered or shorted together. Ensure that these connections will not harm the device to which you want to attach the transceiver.

The SEL-2812 has the following power specifications:

- Operating Voltage: ±5 to ±10 Vdc
- Typical Current Draw: <15 mA
The transceiver draws power from the EIA-232 data as shown in Table 3.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DCE</td>
</tr>
</tbody>
</table>

The transceiver additionally draws power per Table 4.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Voltage (Vdc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 to +10</td>
</tr>
<tr>
<td>7</td>
<td>±5 to ±10</td>
</tr>
</tbody>
</table>

Figure 6 shows the transceiver rear labels, which indicate the internally jumpered pins, pinouts, and signal names.

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The transceiver LEDs are dark.</td>
<td>Input power is not present</td>
<td>Verify that connected IED device is powered on.</td>
</tr>
<tr>
<td>The transceiver does not communicate data.</td>
<td>Wiring error, Reflection</td>
<td>Verify fiber connections. Verify connecting port is DTE-compliant. If fiber length is between 350 to 450 meters, use Attenuator Kit 91560.</td>
</tr>
</tbody>
</table>
Dimensions

Figure 7 SEL-2812 Dimensions

Specifications

Compliance
Designed and manufactured under an ISO 9001 certified quality management system
CE Mark
FCC CFR 47 Part 15 Class A

General
Data Rate
As high as 115.2 kbps, full duplex, no jumpers or settings

Link Data Delay
Serial Data: 6 µs + 5 µs/km of fiber
IRIG-B Time Code: 15 µs + 5 µs/km of fiber
Note: Link includes two transceivers and fibers.

Fiber-Optic Port
Optical Interface
Connector: ST
Fiber: Multimode fiber (50 to 200 µm)
Optical Source: 850 nm VCSEL transmitter
Maximum Output Level: –13 dBm
Typical Transmit Level: –16 dBm
Minimum Transmit Level: –20 dBm
Minimum RX Sensitivity: –36 dBm
Fiber-Optic Link Budget: 16 dB

IRIG-B Connections
Switch selects IRIG-B connections via DB-9 connector or IRIG-B jack

Projection From DB-9 Connector
127 mm (5 in) typical, including fiber-optic connector and minimum cable bend radius

Power Requirements
The SEL-2812 can be powered from Pin 3 and Pin 1 or Pin 7 of its DB-9 connector.
Pin 1 Power: +5 to +10 Vdc
Pin 3, 7 Power: ±5 to ±10 Vdc
Maximum Current Draw: 15 mA
Note: The SEL-2812 can accept input voltages on Pin 1 as high as 15 Vdc if the power source is current-limited to 100 mA or lower.

Environmental
Operating Environment
Indoor Use Only
Insulation Class 3
Pollution Degree 2
Overvoltage Category 2
Operating Temperature: –40° to +85°C (–40° to +185°F)
Non-Operating Temperature: –40° to +85°C (–40° to +185°F)
Relative Humidity: 0%–95%, noncondensing
Altitude: 2000 m (6562 ft)

Type Tests
Electromagnetic Compatibility General
Measuring Relays and Protection Equipment: IEC 60255-26:2013
Electromagnetic Compatibility Emissions

<table>
<thead>
<tr>
<th>Emissions:</th>
<th>Standard Details</th>
<th>Severity Level</th>
</tr>
</thead>
</table>

Electromagnetic Compatibility Immunity

<table>
<thead>
<tr>
<th>Immunity:</th>
<th>Standard Details</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted RF Immunity:</td>
<td>IEC 60255-26:2013, Clause 7.2.8, EN 60255-26:2013, Clause 7.2.8, IEC 61000-4-6:2008</td>
<td>±2, 4, 6, 8 kV contact; ±2, 4, 8, 15 kV air</td>
</tr>
<tr>
<td>Radiated RF Immunity:</td>
<td>IEC 60255-26:2013, Clause 7.2.4, EN 60255-26:2013, Clause 7.2.4, IEC 61000-4-3:2006 + A1:2007 + A2:2010</td>
<td>±2, 4, 6, 8 kV contact; ±2, 4, 8, 15 kV air</td>
</tr>
</tbody>
</table>

Power Frequency

<table>
<thead>
<tr>
<th>Immunity:</th>
<th>Standard Details</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Field Immunity:</td>
<td>EN 60255-26:2013, Clause 7.2.10, IEC 61000-4-8:2009</td>
<td>±100 A/m >60 seconds; ±1000 A/m 1 to 3 seconds; 50/60 Hz</td>
</tr>
</tbody>
</table>

Electrostatic Discharge

<table>
<thead>
<tr>
<th>Discharge immunity:</th>
<th>Standard Details</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Relays and Protection Equipment</td>
<td>IEC 60255-27:2014</td>
<td>±2, 4, 6, 8 kV contact; ±2, 4, 8, 15 kV air</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Environment:</th>
<th>Standard Details</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold:</td>
<td>IEC 60068-2-1:2007</td>
<td>16 hours at −40°C</td>
</tr>
<tr>
<td>Dry Heat:</td>
<td>IEC 60068-2-2:2007</td>
<td>16 hours at +85°C</td>
</tr>
<tr>
<td>Damp Heat, Steady State:</td>
<td>IEC 60068-2-78:2012</td>
<td>10 days, 40°C, 93% RH</td>
</tr>
<tr>
<td>Damp Heat, Cyclic:</td>
<td>IEC 60068-2-30:2005</td>
<td>Test Db, Variant 2; 12 hr at 25°C + 12 hr at 55°C, 95% RH, 6 cycles</td>
</tr>
<tr>
<td>Vibration:</td>
<td>IEC 60255-21-1:1988</td>
<td>Class 1 Endurance; Class 2 Response</td>
</tr>
</tbody>
</table>

Safety

Shock and Bump:	IEC 60255-21-2:1998	Severity Level: Class 1 Shock Withstand, Bump; Class 2 Shock Response
Seismic:	IEC 60255-21-3:1993	Severity Level: Class 2 Quake Response
Laser Safety:	21 CFR 1040.10	

© 2017–2019 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English-language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit selinc.com or contact your customer service representative.

SCHWEITZER ENGINEERING LABORATORIES, INC.
2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A.
Tel: +1.509.332.1890 • Fax: +1.509.332.7990
selinc.com • info@selinc.com

SEL-2812 Data Sheet

Date Code 20190207