The SEL-3405 High-Accuracy IRIG-B Fiber-Optic Transceiver can send high-accuracy demodulated IRIG-B timing signals to hard-to-reach locations. The SEL-3405T receives a demodulated IRIG-B signal from a high-accuracy clock and sends the signal over multimode fiber-optic cable as long as 4 km to an SEL-3405R that receives the IRIG-B signal and converts it into an electrical signal for the end device. The SEL-3405 automatically compensates for the signal delay of the fiber-optic link to maintain better than 200 ns of accuracy from the time source to the end device. The SEL-3405 provides a solution when accurate time is required, but installing a satellite-synchronized clock is not feasible because a clear view of the sky is unavailable.

➤ **Send IRIG-B Signals Over Fiber-Optic Cables Without Compromising Accuracy.** The SEL-3405 transfers IRIG-B time code over fiber-optic cabling and compensates for signal-propagation delays through the device and fiber-optic cables.

➤ **Apply Easily.** This device requires no settings. Simply plug the SEL-3405 into the DB-9 port of a high-accuracy clock to send time to a downstream device.

➤ **Increase Reliability.** This device can be applied in harsh environments. The SEL-3405 has an operating range of –40° to +85°C and is hardened to provide isolation in extra-high-voltage (EHV) environments. The SEL-3405 provides additional resistance to electromagnetic interference near disconnect switches.

➤ **Provide Isolation to Timing Signals.** The SEL-3405 sends IRIG-B over fiber-optic cables instead of copper to provide isolation against electrical interference.

➤ **Support Multiple Devices.** The SEL-3405 provides precise time of better than 1 μs accuracy in a ring configuration for as many as three devices. You can support additional devices for sub-millisecond timing applications.

➤ **Receive Accurate Time Where Unobstructed Access to a GPS Satellite Is Unavailable.** A clear and unobstructed view of the sky is required to receive satellite signals that allow a satellite-synchronized clock to provide accurate time. Apply the SEL-3405 Transceiver when a clear view of the sky is not available.
Product Overview

Configuring an SEL-3405 link requires two fiber-optic connections between the SEL-3405T and the SEL-3405R. For the first link, the transmit port, T, of the SEL-3405T sends IRIG-B to the receive port, R, of the SEL-3405R. The second link calculates propagation time for cable delay compensation and runs from the SEL-3405R T port to the SEL-3405T R port.

Standard Features
- Support for demodulated IRIG-B formats B000 and B004
- Input-to-output accuracy of better than 200 ns per link
- Reliable operation for EHV environments
- Automatic cable delay compensation

Powering Options
The SEL-3405 can receive power through Pins 1, 3, or 7 of its DB-9 connector. The maximum current draw is 14 mA.

The SEL-C942 Cable shown in Figure 1 includes a female DB-9 connector for connecting to the SEL-3405. This cable has tinned wires for connecting the SEL-3405 to an external power source and a BNC male connector for the IRIG-B signal. This cable works in conjunction with the SEL-9321 Low-Voltage DC Power Supply to provide external power when power is unavailable through an intelligent electronic device (IED) or a clock serial port.

Figure 1 SEL-C942 Cable for an External Power Source
The SEL-3405 will work in conjunction with the SEL-3400 IRIG-B Distribution Module to send IRIG-B signals to multiple devices. The SEL-C940 Cable shown in Figure 2 includes a female DB-9 connector for connecting to the SEL-3405. The cable provides two male BNC connectors for power and IRIG-B signals. Connect one BNC connector to OUT 1 of the SEL-3400, set DIP SW 16 of the SEL-3400 to the ON position, and connect the other BNC connector to one of the IRIG-B ports on the SEL-3400. The SEL-3405R will send time to the IRIG-B input of the SEL-3400, and the SEL-3405T will receive time from an IRIG-B output of the SEL-3400.

Figure 2 SEL-C940 Cable for Use With an SEL-3400

Applications

Connecting the SEL-3405T to the SEL-2401

When connecting to the SEL-2401 Satellite-Synchronized Clock, use the SEL-9321 Power Supply to power the SEL-3405T. Provide IRIG-B input and power to the SEL-3405T with an SEL-C942 Cable. Connect the SEL-2401 Clock’s BNC port to the BNC connector of the SEL-C942 Cable to send an IRIG-B signal to an SEL-3405T. The SEL-3405R provides IRIG-B out on Pins 4 and 6 of the DB-9 port.

Figure 3 Connecting an SEL-3405T to an SEL-2401

Connecting the SEL-3405T to the SEL-2407

Use the SEL-2407® Satellite-Synchronized Clock serial port to power the SEL-3405T as well as provide an IRIG-B signal through an SEL-C654 Cable. The SEL-C654 Cable provides an IRIG-B signal through the use of the J1 mono jack on the side of the SEL-3405. Use the SEL-2407 Clock’s serial port to provide power and an IRIG-B signal to the SEL-3405T. The IRIG-B signal from the SEL-2407 DB-9 port is accurate to within ± 1 µs peak. If higher accuracy is required, use an SEL-2407 BNC port. Use the SEL-C654 Cable to connect the J1 port of the SEL-3405T to a BNC port of the SEL-2407. Set the side switch on the SEL-3405T to J1.

Figure 4 Connecting an SEL-3405T to an SEL-2407

The SEL-3405T can connect directly to an SEL-2407 without an SEL-C654 Cable. In such a connection, the SEL-3405T will receive both power and IRIG-B from the DB-9 port, but an IRIG-B signal from the SEL-2407 DB-9 port is accurate to within ± 1 µs peak.
Connecting the SEL-3405T to the SEL-2488

The SEL-2488 Satellite-Synchronized Network Clock can provide power through Pin 1 of its serial port. Connect the SEL-3405T directly to the SEL-2488 serial port to obtain power and IRIG-B input. The IRIG-B signal from the SEL-2488 DB-9 port is accurate to within ±100 ns peak.

Synchronizing IEDs With SEL-3405R

The SEL-3405 receives an IRIG-B signal from a fiber-optic link and transmits an IRIG-B signal on Pins 4 and 6 of a DB-9 connector. The SEL-3405R can obtain power from Pin 1 of an SEL IED that has +5 Vdc on Pin 1 of its DB-9 connector, as seen in Figure 6. If Pin 1 power is unavailable, you can use an SEL-C942 Cable with an SEL-9321 for power and IRIG-B output, as seen in Figure 7. The SEL-3405R can also provide an IRIG-B signal to an SEL-3400 and receive power from an SEL-3400 BNC port by using an SEL-C940 Cable, as seen in Figure 8.
Connecting and Disconnecting Fiber-Optic Cables

For ST® connectors not connected to a fiber-optic cable, cover the end with a supplied connector cap to prevent reflected light from appearing as a received message.

Application Examples

Clock and end device locations can vary within a site, and it is sometimes difficult to install a clock in the same physical space as its end devices. Use the SEL-3405 to transfer IRIG-B time code across distances where running coaxial IRIG-B cabling is unrealistic or when installing an antenna is unfeasible because you lack a clear view of the sky. Connect the SEL-3405 to both the clock and the end device and, with no settings, your device will receive a high-accuracy IRIG-B signal.
Extend Your Timing Network

With coaxial cables, IRIG-B time code can be distributed as far as 500 feet. Use the SEL-3405 to connect two SEL-3400 devices and extend your IRIG-B timing signal to locations that traditional coaxial cables cannot reach.

Time-Synchronization Ring With the SEL-3405

Connect the SEL-3405R in a ring of as many as three SEL-3405R transceivers and maintain a timing accuracy of better than 1 μs. Provide an IRIG-B signal to the first SEL-3405R through a single fiber-optic cable from the SEL-3405T T port to the SEL-3405R R port. Connect the T port of the first SEL-3405R to the R port of the second SEL-3405R. Connect the last SEL-3405R R port to the T port of the second SEL-3405R and connect the T port of the last SEL-3405R to the R port of the SEL-3405T to complete the ring. The end devices must be within 20 m of each other to maintain 1 μs accuracy. You can extend the ring to hundreds of devices while maintaining an accuracy of 1 ms.
Transceiver Dimensions

![SEL-3405 Dimensions](image)

Specifications

Compliance
- Designed and manufactured under an ISO 9001 certified quality management system
- CE Mark
- FCC CFR 47 Part 15 Class A

General

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>< 200 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Source</td>
<td>850 nm (infrared) VCSEL Transmitter</td>
</tr>
<tr>
<td>Typical Transmit Level</td>
<td>–12.0 dBm</td>
</tr>
<tr>
<td>Maximum Output Level</td>
<td>–3.0 dBm</td>
</tr>
<tr>
<td>Projection From DB-9 Connector</td>
<td>127 mm (5.0 in) typical, including fiber-optic connector and minimum cable bend radius</td>
</tr>
</tbody>
</table>

Power Requirements

The SEL-3405 can be powered from Pin 1, 3, or 7 of its DB-9 connector.

<table>
<thead>
<tr>
<th>Pin 1 Power Requirement</th>
<th>+5–10 Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 3 or 7 Power Requirement</td>
<td>±5–10 Vdc</td>
</tr>
<tr>
<td>Maximum Current Draw</td>
<td>14 mA</td>
</tr>
</tbody>
</table>

Fiber-Optic Cable and Connectors

- ST Connectors
- Multimode Fiber (50–200 µm)

SEL provides compatible SEL-C808 Multimode 62.5/125 µm Core Fiber-Optic Cables.

Warranty
- 10 Years

Environmental

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Operating: –40° to +85°C (~–40° to +185°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Operating: –40° to +85°C (~–40° to +185°F)</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>0 to 95% noncondensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>2000 m</td>
</tr>
</tbody>
</table>

Type Tests

Electromagnetic Compatibility General
- Measuring Relays and Protection Equipment: IEC 60255-26:2013

Electromagnetic Compatibility Emissions
- Radiated and Conducted Emissions: IEC 60255-26:2013; Clause 7.1
 - EN 60255-26:2013; Clause 7.1
 - CISPR 22:2008
 - EN 55022:2010

Electromagnetic Compatibility Immunity
- Conducted RF Immunity: IEC 60255-26:2013; Clause 7.2.8
 - EN 60255-26:2013; Clause 7.2.8

- Radiated RF Immunity: IEC 60255-26:2013; Clause 7.2.4
 - EN 60255-26:2013; Clause 7.2.4
 - Severity Level: 10 V/m
Power Frequency Immunity: IEC 60255-26:2013; Clause 7.2.10
Magnetic Field Immunity: EN 60255-26:2013; Clause 7.2.10
Severity Level: 5: 100 A/m > 60 seconds; 1000 A/m 1 to 3 seconds; 50/60 Hz

Electrostatic Discharge Immunity: IEC 60255-26:2013; Clause 7.2.3
EN 60255-26:2013; Clause 7.2.3
IEC 61000-4-2:2008
Discharge Severity Level: ± 2, 4, 6, 8 kV contact; ± 2, 4, 8, 15 kV air
IEEE C37.90.3–2001
Discharge Severity Level: ± 2, 4, 8 kV contact; ± 4, 8, 15 kV air

Environmental Tests

Cold: IEC 60068-2-1:2007
Severity Level: 16 hours at –40°C

Severity Level: Test Bd; 16 Hours at +85 ºC

Damp Heat, Cyclic: IEC 60068-2-30:2005
Severity Level: Test Db; Variant 2; 12 Hr @ 25°C + 12 Hr @ 55°C, 95% RH, 6 Cycles

Vibration: IEC 60255-21-1:1988
Severity Level: Class 1 Endurance; Class 2 Response

Severity Level: Class 1 Shock Withstand, Bump; Class 2 Shock Response

Seismic: IEC 60255-21-3:1993
Severity Level: Class 2 Quake Response

Safety

Laser Safety: 21 CFR 1040.10
IEC 60825-1

© 2015 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit www.selinc.com or contact your customer service representative.