Major Features and Benefits

The SEL-3505 and SEL-3505-3 Real-Time Automation Controllers (RTAC) combine the power of IEC 61131 PLC logic with the best features of a communications processor in a small, low-power package. With eight digital inputs, three form C digital outputs, three serial ports, and industry protocols, the SEL-3505-3 is perfect for adding automation to recloser cabinets and other space-limited locations. The SEL-3505 offers four serial ports, one input and one output with an optional internal modem. In this data sheet, SEL-3505 refers to both the SEL-3505 and the SEL-3505-3, unless otherwise specified.

➤ **Simple Setup.** Build a system quickly using ACSELERATOR RTAC® SEL-5033 Software preconfigured templates for SEL relays and other communications connections. The Tag Processor provides methods for visually mapping data relationships between communications protocols.

➤ **Multiple Functions in One Reliable Device.** Use a single SEL-3505 as a remote terminal unit (RTU), protocol gateway, logic processor, PAC, engineering port server, event processor, and SER logger/viewer.

➤ **Proven Reliability.** Depend on a rugged device designed and tested to meet or exceed protective relay standards for vibration, electrical surges, fast transients, and extreme temperatures, as well as meet or exceed IEEE 1613, Standard Environmental and Testing Requirements for Communications Networking Devices in Electric Power Substations.

➤ **IEC 61850.** Integrate high-speed control schemes between the SEL-3505 and relays with IEC 61850 GOOSE peer-to-peer messaging.

➤ **Standard I/O.** Wire loose field I/O, with as many as eight binary inputs and as many as three binary outputs, directly to the SEL-3505.
➤ **Protection Against Malware and Other Cybersecurity Threats.** Protect your RTAC system with exe-GUARD®, which uses advanced cryptographic algorithms to authorize the execution of any program or service on the system. Any tasks not approved by the whitelist are blocked from operation.

➤ **User Security.** Assign individual user and role-based account authentication and strong passwords. Use Lightweight Directory Access Protocol (LDAP) for central user authentication.

➤ **Integrated Security Management.** Comply with NERC/CIP user authentication, logging, and port control requirements. Use the integrated light sensor and accelerometer for cabinet intrusion detection.

➤ **Standard IEC 61131-3 Logic Design.** Create innovative logic solutions directly in ACSELERATOR RTAC by using any of the editor tools: Tag Processor, Structured Text, Ladder Logic, or Continuous Function Chart.

➤ **Flexible Protocol Conversion.** Apply any available client or server protocol on any serial or Ethernet port. Two of the SEL-3505 and three of the SEL-3505-3 serial ports can be used in software-selectable EIA-232 or EIA-485 mode. Choose optional copper or fiber connectors for the two rear Ethernet ports.

➤ **Synchronphasor Technology.** Integrate synchronphasor messages from relays or phasor measurement units (PMUs) in your system by using the IEEE C37.118 client protocol. Use these messages for logic and control in the station or convert them to DNP3 or other protocol for SCADA usage.

➤ **Data Management.** Map and scale data points easily between protocols in small and large systems. You can also normalize IED data into common data types, time-stamp formats, and time zones.

➤ **Single-Point Engineering Access.** Gain engineering access to station IEDs through a single serial port, dial-up modem, or high-speed network connection.

Product Overview

Seamless System Configuration

ACSELERATOR RTAC is a Microsoft® Windows® compatible configuration software for offline and online use with the SEL-3505. A project in ACSELERATOR RTAC contains the complete configuration, settings, and logic for an individual RTAC device. Preconfigured device templates are available for you to add all device and master connections to the project tree view.

Once you create the settings for a specific device connection, improve engineering efficiency by saving a custom device template for later use with similar projects. Share custom templates via email or network for even greater savings.

The Tag Processor view facilitates the mapping of operational data quickly between IEDs and SCADA. ACSELERATOR RTAC is compatible with Microsoft Excel® and other programs, so you can save time and increase accuracy by copying SCADA maps from the source.

There is no need to install or learn more than one software interface. Use the Structured Text, Ladder Diagram, or Continuous Function Chart editors included with ACSELERATOR RTAC to develop custom IEC 61131 logic.

Data Concentration and Protocol Conversion

Configure each serial or Ethernet port to use any of the client, server, or peer-to-peer protocols available for the SEL-3505. For example, when you use IEEE C37.118 protocol to receive synchronphasor messages, you can map analog or Boolean tags and time stamps to DNP3 and send the data to SCADA very efficiently.

Additionally, when you need to define relay connections in a primary/backup arrangement, use the Tag Processor to map relay tags so that the master stations will receive power system information only from the active relay.
IEC 61131 Logic Engine

As depicted in the functional diagram, each SEL-3505 includes an IEC 61131 logic engine that is preconfigured to have access for all system tags, IED data, diagnostics, alarms, security events, and communications statistics for use in integrating your system. The system has no functional separation between those tags mapped for communications protocols and those used in programmable logic. This architecture greatly simplifies system configuration effort because no additional selection is required to identify tags used by the logic engine. You simply use any needed IED data, calculated values, and system tags in deterministic logic for the control of critical applications.

Management of the task-processing sequence and solve rate in the SEL-3505 is similar to that for traditional PLCs or PACs.

Task processing in the logic engine includes protocol I/O, system management, and any custom logic programs you create by using Structured Text (ST), Ladder Logic Diagram (LD), or Continuous Function Charts (CFC). CFC programs are a type of IEC 61131-3 Function Block Diagram (FBD) that provide more programming flexibility than standard FBDs. The ACSELERATOR RTAC software includes the IEC 61131-3 and Tag Processor editors you will use to manage any protocol information and custom logic needed for your system.
Manage User Accounts and Alarms in Web Server

The built-in SEL-3505 web interface provides the ability to manage user accounts and system alarms remotely. Each user account has a unique user name, password, and assigned role that defines system permissions. You can also configure the SEL-3505 to use LDAP central authentication for user account management. The system includes web pages for monitoring user logs and maintaining network policies.

Logged tag values and system events provide a system-wide Sequence of Events report. View the logs online or use ODBC connectivity to download them to a central database.

Flexible Engineering Access

Access Point Routers in the SEL-3505 provide a means for creating transparent connections between any two ports. A transparent connection is a method for using the SEL-3505 as a port server to connect remotely to an IED. Simple logic in the SEL-3505 enables remote engineering access only through supervisory commands.

Applications

Substation SCADA, Report Retrieval, Engineering Access, and Alarm Notification

The SEL-3505 can act as a data concentrator by using protocols such as Modbus®, DNP3, or MIRRORED BITS® communications to integrate both serial and Ethernet IEDs. Enable logging on any system or IED tag to view and archive a station-wide event record.

The SEL-3505 Ethernet connection provides a means to remotely access the system to monitor logs and diagnostics. First establish a remote connection with any IED connected to the SEL-3505 through Engineering Access communications channels. Then use the ACSELERATOR RTAC software suite to manage protection and control settings for these relays remotely.

You can also configure Ethernet connections and monitor system status from the web interface. All of the Ethernet ports can operate on independent networks, or you can bind them for failover operation.
Synchrophasor Integration and Control

The SEL-3505 can integrate synchrophasor messages from the IEEE C37.118 protocol into SCADA protocols, such as DNP3 or Modbus. Easily include the source PMU time stamps and time quality attributes in the SCADA message to allow for system-wide usage of synchrophasor data.

Within the SEL-3505 logic engine, you can perform complex math and logic calculations on synchrophasor data from C37.118-compliant devices.

The SEL-3505 also synchronizes the time clocks in attached devices that accept a demodulated IRIG-B time signal. The SEL-3505 regenerates the demodulated IRIG-B signal from a demodulated source; this signal is precise enough for synchrophasor applications.

Real-Time Control and Logic Processing

The built-in logic processor provides high-speed control and transfer of signals from SEL MIRRORED BITS devices or devices using other protocols. The SEL-3505 can serve as the system controller and SCADA gateway to eliminate costly equipment (such as breakers, interposing relays, and wiring) while also reducing engineering and labor costs.

The intuitive acSELerator RTAC software provides simple setup of analog and binary tags from any device in the system. Integrated tools scale values and create logic in a flexible IEC 61131-3 configuration environment.

Take advantage of multi-protocol support to collect SCADA information, process control commands, and use NTP time synchronization through a single communications link to each Ethernet device.
Secure Communication and User Management

The SEL-3505 and SEL accessories offer security for your automation network. Per-user security profiles provide compliance with role-based requirements. The system can employ intrusion detection, notification, and logging to help maintain perimeter integrity.

The SEL-3505 includes security features so that your system complies with NERC/CIP requirements for auditing, logging, port control, web authentication, and password restrictions. The SEL-3505 also supports central authentication through your existing LDAP server.

By including SEL serial and wireless encrypting devices with the SEL-3505, you can protect remote serial communication to recloser controls or other connected devices.
Control Systems

The custom logic, communications protocols, and I/O in the SEL-3505, SEL-2411, and SEL-2440 permit you to implement complete control systems, whether you perform discrete sequences, continuous control, monitoring, or asset management. SEL subjects its products to tests for harsh environments, so you can be confident that your control system will work reliably in tough applications. Minimize loop wiring and simplify commissioning by installing controls close to process equipment and integrating them with industry standard communications protocols. Additionally, the SEL-3355 Embedded Automation Computer can provide HMI and data archiving functions.

Use a powerful IEC 61131 logic engine to design custom control programs in the SEL-3505. You can set the logic solve rate and program execution order to meet your system requirements. Operate the SEL-3505 as a master controller and use SELOGIC® control equations in the SEL-2411 and SEL-2440 to perform distributed sequential or continuous control algorithms.

With a variety of physical interfaces and open protocol options, the SEL-3505 makes system integration simple. It will reduce engineering time and complexity, so that you can focus on improving productivity and efficiency rather than on fixing communications problems.

Ordering Options

<table>
<thead>
<tr>
<th>Table 1 SEL-3505 Ordering Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Communication</td>
</tr>
<tr>
<td>2 rear Ethernet ports, 10/100BASE-T copper (standard), 100BASE-FX multimode fiber optics (optional), 100BASE-LX single-mode fiber optics (optional)</td>
</tr>
<tr>
<td>Power Supply</td>
</tr>
<tr>
<td>12–24 Vdc</td>
</tr>
<tr>
<td>24–48 Vdc</td>
</tr>
<tr>
<td>Environment</td>
</tr>
<tr>
<td>Conformal coating for chemically harsh and high-moisture environments</td>
</tr>
<tr>
<td>Mounting</td>
</tr>
<tr>
<td>DIN-rail mount</td>
</tr>
<tr>
<td>Surface mount</td>
</tr>
<tr>
<td>Modem</td>
</tr>
<tr>
<td>Integrated 56 kbps dial-up modem (SEL-3505 only)</td>
</tr>
</tbody>
</table>
Panel Features

- LEDs simplify diagnostics by indicating transmitted and received activity on each port.
- Rugged enclosure withstands EMI, RFI, shock, and vibration.
- Built-in optical sensor detects opened cabinet door.
- Programmable bicolor LEDs with configurable labels provide custom annunciation.
- Built-in accelerometer for programmable intrusion detection.
- Demodulated IRIG-B input for high-accuracy time synchronization.
- Optional integrated 56 kbps dial-up modem.
- Independent Ethernet ports may be RJ45 or LC fiber.
- Programmable input and alarm contact.
- Two serial ports are EIA-232/EIA-485 software selectable.
- Eight digital input points.
- Built-in optical sensor detects opened cabinet door.
- Wide operating temperature range: +85°C to -40°C.
Dimensions

Figure 6 SEL-3505-3 Rear-Panel View

Three serial ports (one in front) are EIA-232/EIA-485 software selectable.

Independent Ethernet ports may be RJ45 or LC.

Demodulated IRIG-B input for high-accuracy time synchronization.

Three programmable Form C binary outputs.

Figure 7 SEL-3505 Surface-Mount Dimensions

Figure 8 SEL-3505 DIN-Mount Dimensions
Specifications

Compliance
Designed and manufactured under an ISO 9001 certified quality management system
47 CFR 15B, Class A

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

UL Certified to U.S. and Canadian safety standards (File E220228; NRAQ, NRAQ7)

CE Mark (does not apply to units with dial-up modem)

General
Operating System
SEL Linux® Yellowstone running Linux kernel 3.x with real-time preemption patches

Operating Temperature Range
–40° to +85°C (–40° to +185°F)

Note: Not applicable to UL applications.

Operating Environment
- Pollution Degree: 2
- Overvoltage Category: II
- Insulation Class: Class I equipment
- Relative Humidity: 5%–95%, noncondensing
- Maximum Altitude: 2000 m

Weight (Maximum)
2.27 kg (5 lb)

Processing and Memory
- Processor Speed: 333 MHz
- Memory: 512 MB DDR2 ECC RAM
- Storage: 2 GB

Security Features
- Account Management: User Accounts, User Roles
- LDAP Central Authentication
- Strong Passwords
- Inactive Account Logouts

Intrusion Detection:
- Access/Audit Logs
- Alarm LED
- Light Sensor
- 3-Axis Accelerometer

Encrypted Communication:
SSL/TLS, SSH

Automation Features
Protocols

Client
- DNP3 Serial, DNP3 LAN/WAN, Modbus RTU, Modbus TCP, SEL ASCII, SEL Fast Messaging, LG 8979, IEEE C37.118, CP2179, SNMP, SES-92

Server
- DNP3 Serial, DNP3 LAN/WAN, Modbus RTU, Modbus TCP, SEL Fast Messaging, LG 8979, SES 92, IEC 61850 MMS, IEC 60870-5 101/104, IEEE C37.118, FTP, SFTP

Peer-to-Peer
IEEE-61850 GOOSE, SEL MIRRORED BITS Communications, Network Global Variables (NGVL), Parallel Redundancy Protocol

Engineering Access
Modes:
- SEL Interleaved, Direct

Port Server:
Map Serial Ports to IP Ports

Secure Web Server:
Diagnostic and Communications Data

Time-Code Input (Demodulated IRIG-B)
- **On (1) State:** $V_{IH} \geq 2.2 \text{ V}$
- **Off (0) State:** $V_{IL} \leq 0.8 \text{ V}$
- **Input Impedance:** 1.5 kΩ
- **Accuracy:** 250 ns

Time-Code Output (Demodulated IRIG-B)
- **On (1) State:** $V_{OH} \geq 2.4 \text{ V}$
- **Off (0) State:** $V_{OL} \leq 0.8 \text{ V}$
- **Load:** 50 Ω

Network Time Protocol (NTP) Modes
- **NTP Client:** As many as three configurable servers
- **NTP Server:**

Communications Ports

Ethernet Ports
- **Ports:** 2 rear
- **Data Rate:** 10 or 100 Mbps
- **Rear Connectors:** RJ45 Female or LC Fiber (single-mode or multimode, 100 Mbps only)

SEL-3505 Serial Ports
- **Ports:** 4
- **Type:** 2 EIA-232/EIA-485 (software selectable on ports 1 and 2)
- **Data Rate:** 2 EIA-232 (ports 3 and 4)
- **Data Rate:** 300 to 115200 bps
- **Connector:** DB-9 Female
- **Time Synchronization:** IRIG-B

SEL-3505-3 Serial Ports
- **Ports:** 3
- **Type:** EIA-232/EIA-485 (software selectable)
- **Data Rate:** 300 to 115200 bps
- **Connector:** DB-9 Female
- **Time Synchronization:** IRIG-B

USB Ports
- **Ports:** 1
- **1 Device Port:** Type B

Fiber Optics (Class 1 LASER/LED)
- **Data Rate:** 100 Mbps
- **Connector Type:** LC
- **Wavelength:** 1300 nm
Multimode Option: 62.5 μm fiber
TX Max. Power: –14 dBm
TX Min. Power: –20 dBm
RX Sensitivity: –31 dBm
RX Overload: –14 dBm
Min. TX Level: –20 dBm
Min. RX Sensitivity: –31 dBm
Optical Budget: 11 dBm
Max. Distance: 2 km

Single-Mode Option: 9 μm fiber
TX Max. Power: –8 dBm
TX Min. Power: –15 dBm
RX Sensitivity: –25 dBm
RX Overload: –8 dBm
Min. TX Level: –15 dBm
Min. RX Sensitivity: –25 dBm
Optical Budget: 10 dBm
Max Distance: 15 km

SEL-3505 Input (Units Manufactured Prior to April 2017)

Optoisolated Control Inputs

Software Settings:
- ON: 15–30 Vdc
- OFF: < 5 Vdc
- Pickup/Dropout Delay: 1–30000 ms

Current Draw at Nominal DC Voltage: 2–4 mA

Optoisolated Control Inputs

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>ON</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 V</td>
<td>9.6–18 Vdc</td>
<td><7.2 Vdc</td>
</tr>
<tr>
<td>24 V</td>
<td>19.2–28.8 Vdc</td>
<td><11 Vdc</td>
</tr>
<tr>
<td>48 V</td>
<td>38.4–52.8 Vdc</td>
<td><28.8 Vdc</td>
</tr>
<tr>
<td>125 V</td>
<td>100–135.5 Vdc</td>
<td><75 Vdc</td>
</tr>
</tbody>
</table>

Solid-State Output (SEL-3505 Units Manufactured Prior to April 2017)

100 mA continuous
0–250 Vac/Vdc Operational Voltage
Max. On Resistance: 50 Ω
Min. Off Resistance: 10 MΩ
Insulation: 2500 Vac
Wiring size: 14 AWG Max., 26 AWG Min.
0.4 mm Min. Insulation
105°C, 250 V Min.

Electromechanical Outputs

Mechanical Durability: 10 M no-load operations

DC Output Ratings

- Voltage: 250 Vdc
- Rated Voltage Range: 19.2–275 Vdc
- Rated Insulation Voltage: 300 Vdc

- Make: 30 A @ 250 Vdc per IEEE C37.90
- Continuous Carry: 6 A @ 70°C; 4 A @ 85°C
- Contact Protection: 360 Vdc, 40 J MOV protection across open contacts

- Operation Time (Coil Energization to Contact Closure, Resistive Load): Pickup/Dropout Time ≤ 8 ms typical
- Breaking Capacity (10,000 Operations):
 - 48 V: 0.50 A L/R = 40 ms
 - 125 V: 0.30 A L/R = 40 ms
- Cyclic Capacity (2.5 Cycle/Second):
 - 48 V: 0.50 A L/R = 40 ms
 - 125 V: 0.30 A L/R = 40 ms

Note: Make per IEC 60255-0-20:1974.

AC Output Ratings

- Rated Operational Voltage: 240 Vdc
- Rated Insulation Voltage: 300 Vdc
- Utilization Category: AC-15 (control of electromechanical loads > 72 VA)
- Contact Rating: B300 (B = 5 A, 300 = rated insulation voltage)
- Contact Protection: 270 Vac, 40 J
- Continuous Carry: 3 A @ 120 Vac
 - 1.5 A @ 240 Vac
- Rated Frequency: 50/60 ±5 Hz
- Operating Time (coil energization to contact closure): Pickup/Dropout Time ≤ 8 ms
- Electrical Durability
 - Make VA Rating: 3600 VA, cosφ = 0.3
 - Break VA Rating: 360 VA, cosφ = 0.3

Power Supply

Complies with IEC HiPot and Impulse standards, except when connected to substation battery. The auxiliary (power supply) circuit must be connected to a battery (or other external power supply meeting application requirements) that is not used for switching inductive loads and will provide the required hold-up time.

Input Voltage

- Rated Voltage: 12–24 Vdc
 - 24–48 Vdc

Peak Inrush Current

- 12 Vdc: 19 A
- 24 Vdc: 44 A
- 48 Vdc: 91 A

Power Consumption

- DC: 7 W (with dual fiber Ethernet)
- 5 W (with dual copper Ethernet)

Fuse Rating (Internal)

<table>
<thead>
<tr>
<th>Type</th>
<th>Current Rating</th>
<th>Voltage Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>time lag T</td>
<td>3.15 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250 Vac, 300 Vdc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEC 60127-2/5: H = 1500 A @ 250 Vac, p.f. = 0.7 – 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UL 248-14: 10 kA @ 125 Vac, p.f. = 0.7 – 0.8 / 1500 A @ 250 Vac, p.f. = 0.7 – 0.8 / 1500 A @ 300 Vdc</td>
</tr>
</tbody>
</table>

Schweitzer Engineering Laboratories, Inc.
Product Standards

<table>
<thead>
<tr>
<th>Component</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>IEC 61850-3:2013</td>
</tr>
<tr>
<td>Equipment in Utility Substations</td>
<td>IEEE 1613-2009</td>
</tr>
<tr>
<td>Measuring Relays and Protection Equipment</td>
<td>IEC 60255-26:2013*</td>
</tr>
<tr>
<td></td>
<td>IEC 60255-27:2013</td>
</tr>
</tbody>
</table>

* Acceptance Criteria C applied to 0% dc voltage dips for 10 ms. The auxiliary (power supply) circuit is intended to be connected to a battery (or other external power supply meeting application requirements) that is not used for switching inductive loads and will provide the required hold-up time.

Type Tests

Environmental Tests

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure Protection</td>
<td>IEC 60529-2001 + CRGD:2003</td>
</tr>
<tr>
<td>Vibration Resistance</td>
<td>IEEE 1613-2009</td>
</tr>
<tr>
<td></td>
<td>IEC 60255-21-1:1988</td>
</tr>
<tr>
<td>Shock Resistance</td>
<td>IEEE 1613-2009</td>
</tr>
<tr>
<td></td>
<td>IEC 60255-21-2:1988</td>
</tr>
<tr>
<td>Seismic</td>
<td>IEC 60255-21-3:1993</td>
</tr>
<tr>
<td>Cold, Operational and Storage</td>
<td>IEC 60068-2-1:2007</td>
</tr>
<tr>
<td>Dry Heat, Operational and Storage</td>
<td>IEC 60068-2-2:2007</td>
</tr>
<tr>
<td>Damp Heat, Cyclic</td>
<td>IEC 60068-2-30:2005</td>
</tr>
<tr>
<td>Damp Heat, Steady State</td>
<td>IEC 60068-2-78:2012</td>
</tr>
<tr>
<td>Dielectric Strength and Impulse Tests</td>
<td>IEC 60255-27-2013</td>
</tr>
<tr>
<td>Interference Tests</td>
<td>IEC 60255-27-2013</td>
</tr>
<tr>
<td>RFI and Interference Tests</td>
<td>IEC 60255-27-2013</td>
</tr>
</tbody>
</table>

EMC Emissions

<table>
<thead>
<tr>
<th>Emission Type</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Immunity</td>
<td>CISPR 11:2009+A1:2010</td>
</tr>
<tr>
<td>Conducted</td>
<td>CISPR 22:2008</td>
</tr>
<tr>
<td>Backdoor</td>
<td>ANSI C63.4-2014</td>
</tr>
</tbody>
</table>

Compliance

- **IEC 61850-3:2013**
- **IEEE 1613-2009**
- **IEC 60255-26:2013**
- **IEC 60255-27-2013**

© 2012–2018 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit selinc.com or contact your customer service representative.