New Features

➤ Disconnect control from the Bay Screens application.
➤ Three-position disconnects for increased safety.
➤ A built-in web server that simplifies access to relay data and supports firmware upgrade.
➤ Faster firmware downloads via the Ethernet port.
➤ IEEE 1588–2008 firmware-based Precision Time Protocol (PTP) provides ease of integration.
➤ EtherNet/IP provides ease of integration for industrial automation applications.
➤ Support for IEC 61850 standard operating modes such as Test, Blocked, Test/Blocked, On, and Off for ease of commissioning.
➤ Visualization of system parameters and synchronization of your generator to your system with built-in Synchroscope/Auto Synchronizer applications on the touchscreen display.
Major Features and Benefits

The SEL-700G family of protection relays provides unsurpassed protection, integration, and control features in a flexible, compact, and cost-effective package.

➤ **Basic Generator Protection Features** (SEL-700G0): Ground differential; sensitive restricted earth fault; thermal overload; phase, negative-sequence, residual-ground, and neutral-ground overcurrent elements for backup; residual-ground and neutral-ground time-overcurrent elements; directional residual-ground and neutral-ground overcurrent elements; current unbalance element; voltage-controlled, voltage-restrained time-overcurrent element for backup protection; breaker failure protection for three-pole breaker; under- and overvoltage elements; inverse-time over- and undervoltage elements; loss-of-potential element; volts/hertz or overexcitation protection; directional power elements; loss-of-field; over- and underfrequency protection elements; off-frequency time accumulators; rate-of-change-of-frequency elements; vector shift elements for islanding detection; inadvertent energization protection; RTD protection (requires internal or external SEL-2600 RTD option); field ground using an SEL-2664 Field Ground Module.

➤ **Optional Generator Protection Features** (SEL-700G0+, SEL-700G1, SEL-700G1+): Generator synchronism-check elements; synchronism-check under- and overvoltage elements; inverse-time over- and undervoltage elements; autosynchronism; synchroscope; backup compensator distance elements; out-of-step elements; vector shift elements for islanding detection; 100% stator ground protection elements; and dual-slope current differential protection with harmonic blocking and restraint elements to provide sensitive and secure protection. The high-security mode provides additional security against CT saturation during external events including external transformer energization, external faults, etc.

➤ **Intertie Protection Features** (SEL-700GT): Phase, negative-sequence, and residual-ground overcurrent elements for overcurrent, time-overcurrent, and directional overcurrent protection; breaker failure protection for three-pole breaker; under- and overvoltage elements; inverse-time over- and undervoltage elements; loss-of-potential element; directional power elements; over- and underfrequency protection elements; rate-of-change-of-frequency elements; vector shift elements for islanding detection; tie synchronism-check elements; synchroscope; and RTD protection (requires internal or external SEL-2600 RTD option).

➤ **Optional Intertie Protection Features** (SEL-700GT+). Addition of basic generator protection features, as shown above for the SEL-700G0, to create intertie and generator protection. The relay also includes generator synchronism-check, synchroscope, and autosynchronism functions.

➤ **Wind Generator Protection Features** (SEL-700GW). The SEL-700GW is configured with two sets of phase, negative-sequence, and residual-ground overcurrent elements, and phase, negative-sequence, and residual-ground time-overcurrent elements to provide dual-feeder protection in a multiple wind generator network application. The relay also includes three-pole breaker failure protection for two breakers.

➤ **Generator Monitoring.** Monitor ambient and generator winding temperature using optional analog inputs or RTDs and protect the generator from thermal damage. Use off-frequency time accumulators and protect steam turbine blades from fatigue failures because of off-frequency vibration.

➤ **Operator Controls.** Eight programmable front-panel pushbuttons each with two programmable tricolor LEDs allow for a wide variety of uses, including easy trip and close control and status indications for a breaker. Implement local and remote operator control schemes using 32 local and 32 remote control bits.

➤ **Integrated Web Server.** Log in to the built-in web server to view metering and monitoring data and to download events, Sequential Events Recorder (SER), etc. Use the web server to view relay settings and to perform relay firmware upgrades.

➤ **Relay and Logic Settings Software.** ACSELERATOR QuickSet® SEL-5030 Software reduces engineering costs for relay settings and logic programming. The tools in QuickSet make it easy to develop SELOGIC® control equations. Use the built-in phasor display to verify proper CT polarity and phasing. Use the synchroscope to watch the autosynchronism controls.

➤ **Metering and Reporting.** Built-in metering functions eliminate separately mounted metering devices. Analyze Sequential Events Recorder (SER) reports and oscillographic event reports for rapid commissioning, testing, and post-fault diagnostics. Unsolicited SER protocol allows station-wide collection of binary SER messages.

➤ **Front-Panel HMI.** Navigate the relay HMI using a 2 x 16-character LCD or optional 5-inch, color, 800 x 480-pixel touchscreen display.

Optional Features. Select from a wide offering of optional features, including SNTP (Simple Network Time Protocol), IEEE 1588-2008 firmware-based PTP, IEC 61850 Edition 2, Modbus® TCP/IP, EtherNet/IP, DNP3 LAN/WAN, DNP3 serial, IEC 60870-5-103, PRP with dual Ethernet ports, 10 internal RTDs, voltage/current inputs, additional EIA-232 or EIA-485 communications ports, and single or dual, copper wire or fiber-optic Ethernet ports. Several analog and digital I/O options are available. These include 4 AI/4 AO, 4 DI/4 DO, 8 DI, 8 DO, 3 DI/4 DO/1 AO, 4 DI/3 DO, and 14 DI. Conformal coating for chemically harsh and/or high-moisture environments is available as an option.

Language Support. Choose English or Spanish for your serial ports, including the front-panel serial port. The standard relay front-panel overlay is in English; a Spanish overlay is available as an ordering option.

Intertie Standards and Compliance

The SEL-700GT Intertie Protection Relay provides comprehensive multifunction protection, control, and monitoring for intertie applications as well as intertie generator applications. The SEL-700GT Relay capabilities meet or exceed the protection and control requirements specified in the ANSI/IEEE Std 1547-2018, Standard for Interconnecting Distributed Resources with Electric Power Systems.
Functional Overview

- Sequential Events Recorder
- Event Reports
- Web Server
- Eight Front-Panel Target LEDs, Six of Which Are Programmable
- Two Inputs and Three Outputs Standard
- I/O Expansion*—Additional Contact Inputs, Contact Outputs, Analog Inputs, Analog Outputs, and RTD Inputs
- Single or Dual Ethernet Copper or Fiber-Optic Communications Port*
- Battery-Backed Clock, IRIG-B Time Synchronization
- Instantaneous Metering, Demand Metering
- Eight Programmable Pushbuttons Each With Two Tricolor LEDs
- Off-Frequency Operation Time Accumulators
- Advanced SELogic Control Equations
- 32 Programmable Display Messages
- MIRRORED BITS Communications
- Synchrophasor (IEEE C37.118)
- Breaker Wear Monitor
- Event Messenger Compatible
- Front-Panel HMI With 2 x 16-Character LCD or Optional 5-Inch, Color, 800 x 480-Pixel Touchscreen Display

*Optional

Figure 1 SEL-700G0, SEL-700G1 Generator Protection Relay
- Sequential Events Recorder
- Event Reports
- Web Server
- Eight Front-Panel Target LEDs, Six of Which Are Programmable
- Two Inputs and Three Outputs Standard
- I/O Expansion*—Additional Contact Inputs, Contact Outputs, Analog Inputs, Analog Outputs, and RTD Inputs
- Single or Dual Ethernet Copper or Fiber-Optic Communications Port*
- Battery-Backed Clock, IRIG-B Time Synchronization
- Instantaneous Metering, Demand Metering
- Eight Programmable Pushbuttons Each With Two Tricolor LEDs
- Off-Frequency Operation Time Accumulators
- Advanced SELogic Control Equations
- 32 Programmable Display Messages
- MIRRORED BITS Communications
- Synchrophasor (IEEE C37.118)
- Breaker Wear Monitor
- Event Messenger Compatible
- Front-Panel HMI With 2 x 16-Character LCD or Optional 5-Inch, Color, 800 x 480-Pixel Touchscreen Display

*Optional

Figure 2 SEL-700GT Intertie and Generator Protection Relay
• Sequential Events Recorder
• Event Reports
• Web Server
• Eight Front-Panel Target LEDs, Six of Which Are Programmable
• Two Inputs and Three Outputs Standard
• I/O Expansion*—Additional Contact Inputs, Contact Outputs, Analog Inputs, Analog Outputs, and RTD Inputs
• Single or Dual Ethernet Copper or Fiber-Optic Communications Port*

• Battery-Backed Clock, IRIG-B Time Synchronization
• Instantaneous Metering, Demand Metering
• Eight Programmable Pushbuttons Each With Two Tricolor LEDs
• Off-Frequency Operation Time Accumulators
• Advanced SELogic Control Equations
• 32 Programmable Display Messages
• MIRRORED BITS Communications
• Synchrophasor (IEEE C37.118)
• Breaker Wear Monitor
• Event Messenger Compatible
• Front-Panel HMI With 2 x 16-Character LCD or Optional 5-Inch, Color, 800 x 480-Pixel Touchscreen Display

*Optional

Figure 3 SEL-700GW Wind Generator Protection Relay
Protection Features

AC Analog Inputs
The SEL-700G has between 6 and 14 analog inputs, depending on the model and options selected. All analog inputs are recorded for event reporting and oscillography. Table 1 shows the current and voltage inputs for the different models available. Current inputs are 1 A or 5 A nominal rating and voltage inputs are 300 V continuous rating.

Table 1 Current (ACI) and Voltage (AVI) Card Selection for SEL-700G Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Slot Z Card (MOT Digits)</th>
<th>Slot Z Inputs</th>
<th>Slot E Card (MOT Digits)</th>
<th>Slot E Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>700G0</td>
<td>Basic generator protection</td>
<td>4 ACI/3 AVI (81, 82, 85, 86)</td>
<td>IAX, IBX, ICX, IN, VAX, VBX, VCX</td>
<td>(OX)</td>
<td></td>
</tr>
<tr>
<td>700G0+</td>
<td>Basic generator protection plus</td>
<td>4 ACI/3 AVI (81, 82, 85, 86)</td>
<td>IAX, IBX, ICX, IN, VAX, VBX, VCX</td>
<td>2 AVI (74)</td>
<td>VS, VN</td>
</tr>
<tr>
<td>700G1</td>
<td>Full generator protection</td>
<td>4 ACI/3 AVI (81, 82, 85, 86)</td>
<td>IAX, IBX, ICX, IN, VAX, VBX, VCX</td>
<td>3 ACIE (73, 77)</td>
<td>IAY, IBY, ICY</td>
</tr>
<tr>
<td>700G1+</td>
<td>Full generator protection plus</td>
<td>4 ACI/3 AVI (81, 82, 85, 86)</td>
<td>IAX, IBX, ICX, IN, VAX, VBX, VCX</td>
<td>3 ACI/2 AVI (72, 76)</td>
<td>IAY, IBY, ICY, VS, VN</td>
</tr>
<tr>
<td>700GT</td>
<td>Intertie protection</td>
<td>1 ACI (84, 88)</td>
<td>IN</td>
<td>3 ACI/4 AVI (71, 75)</td>
<td>IAY, IBY, ICY, VS, VAY, VBY, VCY</td>
</tr>
<tr>
<td>700GT+</td>
<td>Intertie and generator protection</td>
<td>4 ACI/3 AVI (81, 82, 85, 86)</td>
<td>IAX, IBX, ICX, IN, VAX, VBX, VCX</td>
<td>3 ACI/4 AV (71, 75)</td>
<td>IAY, IBY, ICY, VS, VAY, VBY, VCY</td>
</tr>
<tr>
<td>700GW</td>
<td>Basic wind generator protection</td>
<td>3 ACIZ (83, 87)</td>
<td>IAX, IBX, ICX</td>
<td>3 ACIE (73, 77)</td>
<td>IAY, IBY, ICY</td>
</tr>
</tbody>
</table>

The SEL-700G offers an extensive variety of protection features, depending on the model and options selected. Table 2 shows the protection features available in the different models.

Table 2 SEL-700G Protection Elements (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Protection Elements</th>
<th>Basic Generator Protection</th>
<th>Basic With</th>
<th>Intertie Protection</th>
<th>Intertie and Generator Protection</th>
<th>Wind Generator Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21C, 25, 64G, 78</td>
<td>21C, 78, 87</td>
<td>21C, 25, 64G, 78, 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700G0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>700G0+</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>700G1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>700G1+</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>700GT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>700GT+</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>700GW</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 SEL-700G Protection Elements (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Protection Elements</th>
<th>Basic Generator Protection</th>
<th>Basic With 21C, 25, 64G, 78</th>
<th>Basic With 21C, 78, 87</th>
<th>Basic With 21C, 25, 64G, 78, 87</th>
<th>Intertie Protection</th>
<th>Intertie and Generator Protection</th>
<th>Wind Generator Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>700G0</td>
<td>700G0+</td>
<td>700G1</td>
<td>700G1+</td>
<td>700GT</td>
<td>700GT+</td>
<td>700GW</td>
</tr>
<tr>
<td>51PY Phase Time-Overcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>51QX Neg.-Seq. Time-Overcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>51QY Neg.-Seq. Time-Overcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>51GX Ground Time-Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>51GY Ground Time-Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>51N Neutral Time-Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>50PX Phase Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>50PY Phase Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>67PY Directional Phase Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>50QX Neg.-Seq. Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>50QY Neg.-Seq. Overcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>67QY Directional Neg.-Seq. Overcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>50GX Ground Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>67GX Directional Ground Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>50GY Ground Overcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>67GY Directional Ground Overcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>50N Neutral Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>67N Directional Neutral Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27X Undervoltage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27Y Undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27S Synchronism Undervoltage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27I Inverse-Time Undervoltage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59X Overvoltage (P, Q, G)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59Y Overvoltage (P, Q, G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59S Synchronism Overvoltage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59I Inverse-Time Overvoltage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32X Directional Power</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32Y Directional Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>81X Over/Underfrequency</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>81Y Over/Underfrequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>81RX Rate-of-Change of Frequency</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>81RY Rate-of-Change of Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BFX Breaker Failure</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BFY Breaker Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>60LOPX Loss of Potential</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>60LOPY Loss of Potential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25 GEN Synchronism Check</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25 TIE Synchronism Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Overcurrent Protection

The SEL-700G provides complete overcurrent protection with as many as two sets of three-phase CTs and one neutral CT input. Phase overcurrent protection is provided for both three-phase inputs. The following overcurrent elements are provided.

Instantaneous Overcurrent Elements

The following instantaneous overcurrent elements are provided in the SEL-700G as shown in Table 2. All instantaneous overcurrent elements provide torque control and definite-time delay settings.

➤ As many as six instantaneous phase overcurrent elements (50P) with peak detection algorithms to enhance element sensitivity during high-fault current conditions where severe CT saturation may occur.

➤ As many as four instantaneous negative-sequence overcurrent (50Q) elements.

➤ As many as four residual-ground instantaneous overcurrent (50G) elements. These elements use calculated residual (3I0) current levels.

➤ As many as two neutral instantaneous overcurrent elements (50N).

Directional Instantaneous Overcurrent Elements

The following directional overcurrent elements are available in the SEL-700G with directional control (see Table 2).

➤ As many as three directional phase overcurrent elements (67P).

➤ As many as two directional negative-sequence overcurrent elements (67Q).

➤ As many as four directional residual-ground overcurrent elements (67G).

➤ As many as two directional neutral-ground overcurrent elements (67N).

Time-Overcurrent Elements

The SEL-700G provides the time-overcurrent elements listed in Table 2. These time-overcurrent elements support the IEC and US (IEEE) time-overcurrent characteristics. Electromechanical disc reset capabilities are provided for all time-overcurrent elements.

➤ As many as two phase time-overcurrent (51P) elements are provided. These phase elements operate on the maximum of phase currents. One 51P element has directional control.

➤ As many as two negative-sequence time-overcurrent (51Q) elements are provided. These elements operate on the calculated negative-sequence current for each set of three-phase inputs. One 51Q element has directional control.

➤ As many as two residual time-overcurrent (51G) elements are provided. These elements use calculated residual (3I0) current levels. Both 51G elements have directional control.

➤ One neutral time-overcurrent (51N) element is provided with directional control.

Differential Protection (87)

When specified, the SEL-700G detects stator faults using a secure, sensitive current differential function. This function has a sensitive percentage-restrained differential element and an unrestrained element. The differential function provides the unique capability of power transformer and CT connection compensation. This allows you to conveniently include the unit step-up transformer in the generator differential zone using wye-connected CTs for both input sets. The relay allows you to choose harmonic blocking, harmonic restraint, or both, providing a reliable differential protection during transformer inrush conditions. Even-numbered harmonics (second and fourth) provide security during energization, while fifth harmonic blocking provides security for over-excitation conditions. Set second-, fourth-, and fifth-harmonic thresholds independently. The dual-slope percentage restraint characteristic improves element

Table 2 SEL-700G Protection Elements (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Protection Elements</th>
<th>Basic Generator Protection</th>
<th>Basic With Intertie Protection</th>
<th>Intertie and Generator Protection</th>
<th>Wind Generator Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21C, 25, 64G, 78</td>
<td>21C, 25, 64G, 78</td>
<td>21C, 25, 64G, 78</td>
<td>700G0</td>
</tr>
<tr>
<td>Autosynchronizer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Off-Frequency Accumulators</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* These inverse time-overcurrent elements have directional control.
* The 50N element uses the 67NnP and 67NnT Relay Word bits for the SEL-700G0, SEL-700G0+, SEL-700G1, SEL-700G1+, and SEL-700GT+ models.
* Two elements are available (select X- and/or Y-side phase, phase-to-phase, positive sequence, or synchronism voltage VS, depending on the part number).
* Two elements are available (select X- and/or Y-side phase, phase-to-phase, residual, positive sequence, negative sequence, neutral voltage VN, or synchronism voltage VS, depending on the part number).
security for through-fault conditions. The high-security mode provides additional security against CT saturation during external events including external transformer energization, external faults, etc.

Restricted Earth Fault (REF) Protection

Apply the REF protection feature for sensitive detection of internal ground faults on grounded wye-connected windings. The neutral current CT provides the operating current. Polarizing current is derived from the residual current calculated for the protected winding. A sensitive directional element determines whether the fault is internal or external. Zero-sequence current thresholds and selectable CT saturation logic supervise tripping.

Ground Differential Protection (87N)

SEL-700G relays with generator protection are equipped with a ground differential function that provides selective ground fault detection for solidly grounded and low-impedance grounded generators. This function helps protect generators on multimachine buses, because the element does not respond to ground faults on the parallel generators.

Generator Synchronism Check (25G)

You can specify the SEL-700G with a built-in generator synchronism-check function (25G). The synchronism-check function is extremely accurate and provides supervision for acceptable voltage window and maximum percentage difference, maximum and minimum allowable slip frequency, target closing angle, and breaker closing delay. The synchronism-check report gives complete information on the three latest paralleling operations, including the generator and system voltages and frequencies, slip frequency, and phase angle when the close was initiated. The relay also keeps a running average of the breaker close time.

Intertie Synchronism Check (25T)

The intertie model of the SEL-700G has the tie synchronism-check function (25T), which provides the closing window for the bus-tie breaker when connecting to the utility system.

Autosynchronizer and Synchroscope

Selected SEL-700G models have the built-in autosynchronizer function, which provides output contact interfaces for the generator field voltage regulator and the prime mover speed control governor. Frequency, voltage, and phase are automatically synchronized and the generator is connected to the power system with this function. The relay also provides generator autosynchronism reports to record the automatic synchronizing event. The generator synchronization process can be viewed on a PC-based synchroscope (see example in Figure 4) with QuickSet.

Figure 4 QuickSet Synchroscope

Relays equipped with the touchscreen display come with a built-in Synchroscope application in the Monitor folder, which displays a graphical representation of the phasor difference between the bus and the generator or tie. You can also use the Auto Synchronization application in the Control folder to initiate auto-synchronization of your generator and your system.

100 Percent Stator Ground Detection (64G)

The SEL-700G detects stator ground faults on high-impedance grounded generators using a conventional neutral-overvoltage element and a third-harmonic voltage differential detection scheme for 100 percent stator winding coverage. The neutral overvoltage element detects winding ground faults in approximately 85 percent of the winding. Faults closer to the generator neutral do not result in high neutral voltage but are detected using third harmonic neutral and terminal voltages. The combination of the two measuring methods provides ground fault protection for the full winding.

Use the SEL-2664S Stator Ground Protection Relay for 100 percent stator ground protection using a multisine signal injection method for a superior solution that is independent of third-harmonic voltage magnitude. This relay works with the generator in or out of service and during generator ramp up without any blind spots.

Field Ground Protection (64F)

The SEL-700G, with the SEL-2664 Field Ground Module, detects field ground faults by measuring field insulation-to-ground resistance using the switched dc voltage injection method. Two-level protection for alarm and trip functions is provided.
Directional Power Detection (32)
Sensitive directional power elements in the SEL-700G provide antimotoring and/or low forward power tripping. As many as eight elements (four each for the X side and Y side) for detecting real (Watts) or reactive (VARs) directional power flows, having independent time-delays and sensitivities are provided. Directly trip the generator under loss-of-prime mover conditions to prevent prime movers from motoring, or use low forward power indication as a tripping interlock when an orderly shutdown is required.

Over-Excitation Protection (24)
The SEL-700G provides one definite-time for alarm and one composite inverse-time volts/hertz element. The composite inverse-time characteristic may be enabled with a two-step definite-time characteristic, a definite/inverse-time characteristic, or a simple inverse-time characteristic. A custom curve option is also available.

Loss-of-Field Protection (40)
Two offset positive-sequence mho elements detect loss-of-field conditions. Settable time-delays help reject power swings that pass through the machine impedance characteristic. By using the included directional supervision, one of the mho elements can be set to coordinate with the generator minimum excitation limiter and its steady-state stability limit.

Out-of-Step Protection (78)
SEL-700G relays use a single or a double-blinder scheme, depending on user selection, to detect an out-of-step condition. In addition to the blinders, the scheme uses a mho circle that restricts the coverage of the out-of-step function to the desired extent. Furthermore, both schemes contain current supervision and torque control to supervise the operation of the out-of-step element.

Negative-Sequence Overcurrent Protection (46)
Negative-sequence current heats the rotor at a higher rate than positive-sequence or ground current. The negative-sequence definite-time element provides alarm for early stages of an unbalanced condition. The inverse time-overcurrent element provides tripping for sustained unbalance conditions to prevent machine damage. The inverse-time negative-sequence element provides industry standard $(I_2)^2 \times t$ protection curves.

System Backup Protection (21C, 51V, 51C)
The SEL-700G offers you the choice of three methods for performing system backup protection. Compensator distance elements (21C), a voltage-restrained phase time-overcurrent element (51V), and a voltage-controlled phase time-overcurrent (51C) element are all available; you simply enable the element you wish to use.

Over- and Undervoltage Protection (27, 59)
Phase, phase-to-phase, and positive-sequence undervoltage (27), overvoltage (59), residual overvoltage (59G) and negative-sequence overvoltage (59Q) elements help you create protection and control schemes, such as undervoltage load shedding, or standby generation start/stop commands.

➤ Phase and phase-to-phase undervoltage elements operate with the minimum of the measured voltage magnitudes; these elements operate when any single measurement falls below the set thresholds.
➤ Phase and phase-to-phase overvoltage elements operate with the maximum of the measured voltage magnitudes.
➤ The positive-sequence undervoltage elements operate when the calculated positive-sequence voltage V_1 drops below the set thresholds.
➤ The positive-sequence overvoltage elements operate when the calculated positive-sequence voltage V_1 exceeds the set thresholds.
➤ The negative-sequence overvoltage elements operate when the calculated negative-sequence voltage V_2 exceeds set thresholds.
➤ The residual-ground voltage element operates when the zero-sequence voltage V_{30} exceeds the set point.
➤ Inverse-time overvoltage (59I) and inverse-time undervoltage (27I) elements that operate on the measure phase-to-neutral voltages, phase-to-phase voltages, or VS channel voltage, depending on the relay part number.

All voltage elements provide definite-time delay settings.

Loss-of-Potential Logic (60LOP)
Relay functions that use phase voltages or symmetrical component voltages rely on valid inputs to make the correct decisions. The LOP logic detects open voltage transformer fuses or other conditions that cause a loss of relay secondary voltage input. The SEL-700G with voltage inputs, includes loss-of-potential logic that detects one, two, or three potentially blown fuses. This patented logic is unique and is universally applicable. It also offers a SELOGIC setting to block the LOP logic under user-defined conditions. The LOP feature allows for the blocking of protection elements to add security during fuse failure.
Breaker Failure Protection (BF)
The SEL-700G offers breaker failure protection for up to two three-pole breakers. Use the breaker failure detection to issue re-trip commands to the failed breaker, or to trip adjacent breakers using the relay’s contact output logic or communications-based tripping schemes.

Inadvertent Energization Detection
Occasionally, the unit breaker for an out-of-service generator is closed inadvertently. The SEL-700G detects this condition using voltage, current, and other supervisory conditions you select through an SELOGIC control equation.

Frequency Protection (81)
Six levels of over- or underfrequency elements detect abnormal frequency operating conditions. Use the independently time-delayed output of these elements to trip or alarm. Phase undervoltage supervision prevents undesired frequency element operation during start-up, shutdown, and faults, and while the field is de-energized. SEL-700G frequency elements have high accuracy (less than 0.01 Hz).

Rate-of-Change-of-Frequency Protection (81R)
Four independent rate-of-change-of-frequency elements are provided with individual time delays for use when frequency changes occur, for example, when there is a sudden imbalance between generation and load. They call for control action or switching action such as network decoupling or load shedding. Each element includes logic to detect either increasing or decreasing frequency and above or below nominal frequency.

Vector Shift Protection (78VS)
When distributed generators (DG) are connected in the utility network, the vector shift element (78VS) is used to detect islanding conditions and trip the DG. Failure to trip islanded generators can lead to problems such as personnel safety, out-of-synchronization reclosing, and degradation of power quality. Based on the change in the angle of the voltage waveform, the islanding condition can be detected by the vector shift function. Use the vector shift element with the 81RF element as a backup for fast and secure islanding detection. The vector shift element operates within three cycles, which is fast enough to prevent reclosing out-of-synchronism with the network feeders to avoid generator damage.

Off-Frequency Accumulators
The SEL-700G tracks the total time-of-operation in up to six off-nominal frequency bands. If the off-nominal time of operation exceeds one of the independent time set points, the relay can trip or alarm.

Thermal Overload Protection (49T)
The SEL-700G thermal element provides generator overload protection based on the thermal model described in IEC standard 60255-8. The model can be biased by ambient temperature if the RTD option is used.

The relay operates a thermal model with a trip value defined by the relay settings and a present heat estimate that varies with time and changing generator current.

RTD Thermal Protection
When the SEL-700G is equipped with either an optional 10 RTD input expansion card or an external SEL-2600 RTD Module with up to 12 RTD inputs, as many as 12 thermal elements in the relay can be programmed for two levels of thermal protection per element. Each RTD input provides an alarm and trip thermal pickup setting in degrees C, provides open and shorted RTD detection, and is compatible with the following three-wire RTD types:
- PT100 (100 Ω platinum)
- NI100 (100 Ω nickel)
- NI120 (120 Ω nickel)
- CU10 (10 Ω copper)

Additionally, the winding RTDs and the ambient temperature RTD can be configured and used to bias the generator thermal model and thermal protection.
Operator Controls

Operator controls eliminate traditional panel control switches. Eight conveniently sized operator controls are located on the relay front panel (see Figure 5). The SER can be set to track operator controls. Change operator control functions using SELOGIC control equations.

NOTE: All text can be changed with the configurable labels kit.

LOCK: The LOCK operator control blocks selected functions. Press it for at least three seconds to engage or disengage the lock function. While locked in position, the following operator controls cannot change state if pressed: TRIP and CLOSE.

AUX: The AUX operator control and LEDs are user programmable.

CLOSE and TRIP: Use the CLOSE and TRIP operator controls to close and open the connected circuit breaker. They can be programmed with intentional time delays to support operational requirements for breaker-mounted relays. This allows the operator to press the CLOSE or TRIP pushbutton, then move to an alternate location before the breaker command is executed.

In the SEL-700G with the touchscreen display, you can also use the front-panel operator control pushbuttons to jump to a specific screen while also using them for LOCK/CLOSE/TRIP operations, etc. You can program the selectable operator pushbutton screen settings under the Touchscreen settings category in QuickSet and map the button to a specific screen.

Built-In Web Server

Every Ethernet-equipped SEL-700G includes a built-in web server. Use any standard web browser to interface with the relay and perform the following actions:

➤ Log in with password protection.
➤ Safely read the relay settings.
➤ Verify the relay self-test status and view the relay configuration.
➤ Inspect meter reports.
➤ Download SER and event reports.
➤ Upload new firmware (firmware upgrade).

Figure 6 shows the fundamental metering screen that can be accessed by clicking Meter > Fundamental. Use the Meter menu to view all the available relay metering statistics.
You can upgrade the relay firmware through the relay web server by clicking **System > File Management** and selecting the firmware upgrade file. Figure 8 shows the firmware upgrade webpage.

Figure 8 Upgrade the Relay Firmware From the File Management Webpage

Relay and Logic Settings Software

QuickSet Software simplifies settings and provides analysis support for the SEL-700G. With QuickSet you have several ways to create and manage relay settings:

- Develop settings off-line with an intelligent settings editor that only allows valid settings.
- Create SELLOGIC control equations with a drag-and-drop text editor.
- Configure proper settings using online help.
- Organize settings with the relay database manager
- Load and retrieve settings using a simple PC communications link.

With QuickSet you can verify settings and analyze events; and analyze power system events with the integrated waveform and harmonic analysis tools.

The following features of QuickSet can monitor, commission, and test the SEL-700G:

- The PC interface remotely retrieves power system data.
- The HMI monitors meter data, Relay Word bits, and output contacts status during testing. The control window allows resetting of metering quantities, and other control functions.

- The synchroscope screen provides a visual display of the autosynchronizer function.
- Bay control allows you to design new bay screens and edit existing bay screens by launching **ACSELERATOR Bay Screen Builder SEL-5036 Software** for the SEL-700G relays with the touchscreen display.

ACSELERATOR Bay Screen Builder SEL-5036 Software

The SEL-700G with the touchscreen display layout option provides you with the ability to design bay configuration screens to meet your system needs. You can display the bay configuration as a single-line diagram (SLD) on the touchscreen. You can use ANSI and IEC symbols, along with analog and digital labels, for the SLD to indicate the status and control of the breaker and two- or three-position disconnects, bus voltages, and power flow through the breaker. In addition to SLDs, you can design the screens to show the status of various relay elements via Relay Word bits or to show analog quantities for commissioning or day-to-day operations. You can design these screens with the help of Bay Screen Builder in conjunction with QuickSet. Bay Screen Builder provides an intuitive and powerful interface to design bay screens to meet your application needs.
Figure 9 Bay Screen Builder
Metering and Monitoring

The SEL-700G, depending on the model selected, provides extensive metering capabilities. See Specifications on page 35 for metering and power measurement accuracies. As shown in Table 3, metered quantities include voltages and currents; sequence voltages and currents; power, frequency, and energy; and maximum/minimum logging of selected quantities. The relay reports all metered quantities in primary quantities (current in A primary and voltage in V primary).

Table 3 SEL-700G Metered Values

<table>
<thead>
<tr>
<th>Types of Metering</th>
<th>Quantities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous</td>
<td>Currents: IAn, IBn, ICn, IIn, IN</td>
<td>Phase currents, calculated residual currents (IG = 3I0 = IA + IB + IC) and neutral current, for n = X and Y</td>
</tr>
<tr>
<td>Remote Analogs</td>
<td>Voltages: VA, VB, VC, VN</td>
<td>Wye-connected voltage inputs for n = X and Y</td>
</tr>
<tr>
<td>Demand and Peak Demand</td>
<td>Voltages: VABn, VBCn, VCan</td>
<td>Delta-connected voltage inputs for n = X and Y</td>
</tr>
<tr>
<td></td>
<td>Voltage VS</td>
<td>Synchronism-check voltage input</td>
</tr>
<tr>
<td></td>
<td>Power kWAn, Bn, Cn, 3Pn</td>
<td>Single and three-phase kilowatts, kilovars, and kilovolt-amps for n = X and Y</td>
</tr>
<tr>
<td></td>
<td>kVARAn, Bn, Cn, 3Pn</td>
<td>Single and three-phase kilovar-reactive and kilovolts</td>
</tr>
<tr>
<td></td>
<td>kVAAAn, Bn, Cn, 3Pn</td>
<td>Single and three-phase kilovolt-amperes</td>
</tr>
<tr>
<td></td>
<td>Energy MWhAn, Bn, Cn, 3Pn</td>
<td>Single and three-phase real, reactive and apparent energy for n = X and Y</td>
</tr>
<tr>
<td></td>
<td>MVARhAn, Bn, Cn, 3Pn</td>
<td>Single and three-phase real, reactive and apparent energy for n = X and Y</td>
</tr>
<tr>
<td></td>
<td>MVAhAn, Bn, Cn, 3Pn</td>
<td>Single and three-phase real, reactive and apparent energy for n = X and Y</td>
</tr>
<tr>
<td></td>
<td>Power Factor PFAn, Bn, Cn, 3Pn</td>
<td>Single and three-phase power factor for n = X and Y</td>
</tr>
<tr>
<td></td>
<td>Sequence I1n, 3I2n, 3I0n, V1n, 3V2n, 3V0n</td>
<td>Positive, negative and zero-sequence currents and voltages for n = X and Y</td>
</tr>
<tr>
<td></td>
<td>Frequency FREQn, FREQS (Hz)</td>
<td>Instantaneous power system frequency for n = X and Y and for synchronism-check voltage input VS</td>
</tr>
<tr>
<td></td>
<td>V/Hz</td>
<td>Calculated volts/hertz in percent, using highest measured voltage and measured frequency</td>
</tr>
<tr>
<td></td>
<td>VPX3, VN3</td>
<td>Phase and neutral third harmonic voltage for stator ground protection</td>
</tr>
<tr>
<td></td>
<td>Gen TCU %</td>
<td>Generator thermal capacity used (%)</td>
</tr>
<tr>
<td></td>
<td>Rf kOhm</td>
<td>Field winding insulation resistance to ground (kOhm)</td>
</tr>
<tr>
<td></td>
<td>AXx01–AXx04</td>
<td>Analog inputs</td>
</tr>
<tr>
<td></td>
<td>MV01–MV32</td>
<td>Math variables</td>
</tr>
<tr>
<td></td>
<td>RA001–RA128</td>
<td>Remote analogs</td>
</tr>
<tr>
<td></td>
<td>RTDn (n = 1 to 12)</td>
<td>RTD temperature measurement (degrees C)</td>
</tr>
</tbody>
</table>

Load Profile

The SEL-700G features a programmable Load Profile (LDP) recorder that records as many as 17 metering quantities into nonvolatile memory at fixed time intervals. The LDP saves several days to several weeks of the most recent data depending on the LDP settings (9800 entries total).

Synchronized Phasor Measurement

Combine the SEL-700G with an SEL IRIG-B time source to measure the system angle in real time with a timing accuracy of ±10 µs. Measure instantaneous voltage and current phase angles in real time to improve system operation with synchrophasor information. Replace state measurement, study validation, or track...
system stability. Use SEL-5077 SYNCHROWAVE® Server Software or SEL-5078-2 SYNCHROWAVE® Console Software to view system angle at multiple locations for precise system analysis and system-state measurement (see Figure 10).

Send synchrophasor data using IEEE C37.118-2005 protocol to SEL synchrophasor applications. These include the SEL-3378 Synchrophasor Vector Processor (SVP), SEL-3530 Real-Time Automation Controller (RTAC), and the SEL-5078-2 SYNCHROWAVE Central Visualization and Analysis Software suite.

The SEL-3373 Station Phasor Data Concentrator (PDC) and the SEL-5073 SYNCHROWAVE PDC software correlate data from multiple SEL-700G relays and concentrate the result into a single output data stream. These products also provide synchrophasor data archiving capability. The SEL-3378 SVP enables control applications based on synchrophasors. Directly measure the oscillation modes of your power system and then act on the result. Use wide-area phase angle slip and acceleration measurements to properly control islanding of distributed generation. With the SVP, you can customize a synchrophasor control application according to the unique requirements of your power system.

The data rate of SEL-700G synchrophasors is selectable with a range of 1–60 messages per second. This flexibility is important for efficient use of communication capacity.

The SEL-700G phasor measurement accuracy meets the highest IEEE C37.118-2005 Level 1 requirement of 1 percent total vector error (TVE). This means you can use any SEL-700G model in an application that otherwise would require purchasing a separate dedicated phasor measurement unit (PMU).

Use the SEL-700G with SEL communications processors, or the SEL-3530 RTAC, to change nonlinear state estimation into linear state estimation. If all necessary lines include synchrophasor measurements then state estimation is no longer necessary. The system state is directly measured.

The SEL-700G relay, having generator elements, tracks the performance and utilization of the protected generator by tracking the following generator operating statistics. These trend, alarm points, and preprogrammed responses to help operators prevent a cascading system collapse and maximize system stability. Awareness of system trends provides operators with an understanding of future values based on measured data.

Improve Situational Awareness

Provide improved information to system operators. Advanced synchrophasor-based tools produce a real-time view of system conditions. Use system trends, alarm points, and preprogrammed responses to help operators prevent a cascading system collapse and maximize system stability. Awareness of system trends provides operators with an understanding of future values based on measured data.

> Increase system loading while maintaining adequate stability margins.
> Improve operator response to system contingencies such as overload conditions, transmission outages, or generator shutdown.
> Advance system knowledge with correlated event reporting and real-time system visualization.
> Validate planning studies to improve system load balance and station optimization.
Event Reporting and SER

Event reports and the SER simplify post-fault analysis and improve understanding of simple and complex protective scheme operations. In response to a user-selected trigger, the voltage, current, frequency, and element status information contained in each event report confirms the relay scheme and system performance for every fault. Decide how much detail is necessary when you request an event report (e.g., 1/4-cycle or 1/32-cycle resolution, filtered or raw analog data, respectively).

The relay stores as many as 6 of the most recent 180-cycle event reports, 18 of the most recent 64-cycle event reports, or 74 of the most recent 15-cycle event reports in nonvolatile memory. The relay always appends relay settings at the time of the event to the bottom of each event report.

The following analog data formats are available:

- 1/4-cycle or 1/32-cycle resolution, filtered or unfiltered analog, ASCII or Compressed ASCII reports
- 1/32-cycle resolution COMTRADE reports

The relay SER feature stores the latest 1024 entries. Use this feature to gain a broad perspective at a glance. An SER entry helps to monitor input/output change-of-state occurrences and element pickup/dropout.

Synchronized Measurements

The IRIG-B time-code input synchronizes the SEL-700G time to within ±5 ms of the time-source input. A convenient source for this time code is an SEL-2401 Satellite-Synchronized Clock, the SEL-3530 Real Time Automation Controller (RTAC), or the SEL-2032, SEL-2030, or SEL-2020 Communications Processor (via Serial Port 3 on the SEL-700G).

Generator Autosynchronism Report

The SEL-700G with the autosynchronism function generates a generator autosynchronism report with all the relevant analog and digital signals for a quick analysis of the event. The sample rate can be selected between 0.25, 1, and 5 cycles. The report captures 4800 time-stamped data points.

IEC 61850 Test Mode

Test Mode allows you to test an in-service relay without accidentally operating control output contacts. Test Mode includes five different modes:

On: In On mode, the relay operates as normal; it reports IEC 61850 Mode/Behavior status as On and processes all inputs and outputs as normal. If the quality of the subscribed GOOSE messages satisfies the GOOSE processing, the relay processes the received GOOSE messages as valid.

Blocked: This mode is similar to On mode, except that the device does not trip any physical contact output.

Test: In Test mode, the relay processes valid incoming test signals and normal messages and operates physical contact outputs, if the outputs are triggered.
Test/Blocked: This is similar to Test mode, except that the device does not trip any physical contact outputs.

Off: The device does not process any incoming data or control commands (except commands to change the mode). All protection logic is disabled and all data quality is marked as invalid.

Touchscreen Display

You can order the SEL-700G Feeder Protection Relay with an optional touchscreen display (5-inch, color, 800 x 480 pixels). The touchscreen display makes relay data metering, monitoring, and control quick and efficient. The touchscreen display option in the SEL-700G features a straightforward application-driven control structure and includes intuitive and graphical screen designs.

The touchscreen display allows you to:
- View and control bay screens
- Access metering and monitoring data
- Inspect targets
- View event history, summary data, and SER information
- View relay status and configuration
- Control relay operations
- View and edit settings
- Enable the rotating display
- Program control pushbuttons to jump to a specific screen
- Visualize and synchronize your generator to the system with built-in Synchroscope/Auto Synchronizer applications

You can navigate the touchscreen by selecting the folders and applications. The folders and applications of the Home screen are shown in Figure 15. Folders and applications are labeled according to functionality. Additional folder and application screens for the SEL-700G touchscreen display option can be seen in Figure 16 through Figure 25.

Bay Screens Application

The SEL-700G with the touchscreen display option provides you with the ability to design bay configuration screens to meet your system needs. The bay configuration can be displayed as an SLD on the touchscreen. You can create as many as five bay screens with up to two controllable breakers, eight controllable two-position disconnects, and two controllable three-position disconnects. ANSI and IEC symbols, along with analog and digital labels, are available for you to create detailed SLDs of the bay to indicate the status and control of the breaker and disconnects, bus voltages, and power flow through the breaker. Figure 16 shows the default SLD for the touchscreen display option.
Meter Folder Applications

The applications in the Meter folder are part-number dependent. Only those metering applications specific to your part number appear in the Meter folder. Select an application in the Meter folder to display the report for that particular application. Select the Phasor application to view the current and voltage phasors (see Figure 17).

Select the Energy application to view the energy metering quantities (see Figure 18). A reset feature is provided for the Energy, Max/Min, Thermal, Demand, and Peak Demand applications. Press the Reset button (see Figure 18) to navigate to the reset confirmation screen. Once you confirm the reset, the data are reset to zero.

Reports Folder Applications

Select the Reports folder to navigate to the screen where you can access the Events and SER applications. Use these applications to view events and SERs. To view the event summary (see Figure 19) of a particular event record, you can select the event record on the Event History screen. You can also trigger an event report from the Event History screen.

Select the Sequential Events Recorder application to view a history of the SER reports (see Figure 20).

Select the Trash button, shown in Figure 19, on the Event History and Sequential Events Recorder screens and confirm the delete action to remove the records from the relay.

Control Folder Applications

Select the Control folder to navigate to the screen where you can access the Breaker Control, Disconnect Control, Output Pulsing, Local Bits, Auto Synchronizer, and Reset TCU applications. Use the applications to perform breaker control operations, pulse output contacts (Figure 21), control the local bits (Figure 22), and reset TCU for the thermal overload element.
Use the Auto Synchronizer application to initiate auto-synchronization of your generator to the system. Throughout the process, you can see the phasor difference between the bus and the generator via the Synchroscope.

Device Info Folder Applications

Select the Device Info folder to navigate to the screen where you can access specific device information applications (Status, Configuration, and Trip & Diag. Messages) and the Reboot application.

Select the Status application to view the relay status, firmware version, part number, etc. (see Figure 24).

To view the trip and diagnostic messages, select the Trip & Diag. Messages application (see Figure 25). When a diagnostic failure, trip, or warning occurs, the relay displays the diagnostic message on the screen until it is either overridden by the restart of the rotating display, or the inactivity timer expires.
Flexible Control Logic and Integration

The SEL-700G can be ordered with as many as four independently operated serial ports:

- EIA-232 port on the front panel
- EIA-232 or EIA-485 port on the Slot B in the rear
- EIA-232 fiber-optic port on Slot B card in the rear
- EIA-232 or EIA-485 port on the optional communications card in Slot C in the rear

Optionally, the relay supports single or dual, copper or fiber-optic Ethernet ports.

The relay does not require special communications software. You can use any system that emulates a standard terminal system. Establish communication by connecting: computers, modems, protocol converters, printers, an SEL Real-Time Automation Controller (RTAC), SEL communications processor, SEL computing platform, SCADA serial port, and RTUs for local or remote communication. Refer to Table 4 for a list of communications protocols available in the SEL-700G.

Table 4 Communications Protocols

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple ASCII</td>
<td>Plain language commands for human and simple machine communications. Use for metering, setting, self-test status, event reporting, and other functions.</td>
</tr>
<tr>
<td>Compressed ASCII</td>
<td>Comma-delimited ASCII data reports. Allows external devices to obtain relay data in an appropriate format for direct import into spreadsheets and database programs. Data are checksum protected.</td>
</tr>
<tr>
<td>Extended Fast Meter</td>
<td>Binary protocol for machine-to-machine communications. Quick updates SEL communications processors, RTUs, and other substation devices with metering information, relay element, I/O status, time-tags, open and close commands, and summary event reports. Data are checksum protected. Binary and ASCII protocols operate simultaneously over the same communications lines so control operator metering information is not lost while a technician is transferring an event report. Direct communications with the SEL-2600 RTD Module are possible using the unsolicited Fast Meter protocol to read incoming temperature data from the SEL-2600.</td>
</tr>
<tr>
<td>Fast SER Protocol</td>
<td>Provides SER events to an automated data collection system.</td>
</tr>
<tr>
<td>Fast Message Protocol</td>
<td>Use this protocol to write remote analog data from other SEL relays or communications processors via unsolicited writes.</td>
</tr>
<tr>
<td>DNP3</td>
<td>Serial or Ethernet-based DNP3 protocols. Provides default and mappable DNP3 objects that include access to metering data, protection elements, Relay Word bits, contact I/O, targets, SER, relay summary event reports, and setting group selection.</td>
</tr>
<tr>
<td>Modbus</td>
<td>Serial- or Ethernet-based Modbus with point remapping. Includes access to metering data, protection elements, contact I/O, targets, SER, relay summary event reports, and setting groups.</td>
</tr>
<tr>
<td>Synchrophasors</td>
<td>IEEE C37.118-compliant synchrophasors for system state, response, and control capabilities.</td>
</tr>
<tr>
<td>Event Messenger</td>
<td>The use of SEL-3010 Event Messenger allows you to receive alerts directly on your cell phone. Alerts can be triggered through relay events and can include quantities measured by the relay.</td>
</tr>
<tr>
<td>DeviceNet</td>
<td>Allows for connection to a DeviceNet network for access to metering data, protection elements, contact I/O, targets, and setting groups.</td>
</tr>
<tr>
<td>SNTP</td>
<td>Ethernet-based protocol that provides time synchronization of the relay.</td>
</tr>
<tr>
<td>IEEE 1588-2008 firmware-based PTP</td>
<td>Ethernet-based protocol that provides time synchronization of the relay.</td>
</tr>
<tr>
<td>PRP</td>
<td>Provides seamless recovery from any single Ethernet network failure in a dual redundant Ethernet network, in accordance with IEC 62439-3.</td>
</tr>
<tr>
<td>IEC 60870-5-103</td>
<td>Serial communications protocol—international standard for interoperability between intelligent devices in a substation.</td>
</tr>
<tr>
<td>EtherNet/IP</td>
<td>Ethernet-based protocol that includes access to metering data, protection elements, targets, and contact I/O.</td>
</tr>
</tbody>
</table>
Apply an SEL communications processor as the hub of a star network, with point-to-point fiber or copper connection between the hub and the SEL-700G (Figure 26).

The communications processor supports external communications links including the public switched telephone network for engineering access to dial-out alerts and private line connections of the SCADA system.

![Example Communications System](image)

SEL manufactures a variety of standard cables for connecting this and other relays to a variety of external devices. Consult your SEL representative for more information on cable availability. SEL-700G control logic improves integration in the following ways:

- **Replaces traditional panel control switches.** Eliminate traditional panel control switches with 32 local bits. Set, clear, or pulse local bits with the front-panel pushbuttons and display. Program the local bits into your control scheme with SELogic control equations. Use the local bits to perform functions such as a trip test or a breaker trip/close.

- **Eliminates RTU-to-relay wiring.** Eliminate RTU-to-relay wiring with 32 remote bits. Set, clear, or pulse remote bits using serial port commands. Program the remote bits into your control scheme with SELogic control equations. Use remote bits for SCADA-type control operations such as trip, close, and settings group selection.

- **Replaces traditional latching relays.** Replace up to 32 traditional latching relays for such functions as “remote control enable” with latch bits. Program latch set and latch reset conditions with SELogic control equations. Set or reset the nonvolatile latch bits using optoisolated inputs, remote bits, local bits, or any programmable logic condition. The latch bits retain their state when the relay loses power.

- **Replaces traditional indicating panel lights.** Replace traditional indicating panel lights with 32 programmable displays. Define custom messages (e.g., Breaker Open, Breaker Closed) to report power system or relay conditions on the front-panel display. Use Advanced SELogic control equations to control which messages the relay displays.

- **Eliminates external timers.** Eliminate external timers for custom protection or control schemes with 32 general purpose SELogic control equation timers. Each timer has independent time-delay pickup and dropout settings. Program each timer input with any desired element (e.g., time qualify a current element). Assign the timer output to trip logic, transfer trip communications, or other control scheme logic.

- **Eliminates settings changes.** Selectable setting groups make the SEL-700G ideal for applications requiring frequent setting changes and for adapting the protection to changing system conditions.

The relay stores three setting groups. Select the active setting group by optoisolated input, command, or other programmable conditions. Use these setting groups to cover a wide range of protection and control contingencies.

Switching setting groups switches logic and relay element settings. Program groups for different operating conditions, such as station maintenance, seasonal operations, emergency contingencies, loading, source changes, and downstream relay setting changes.

Fast SER Protocol

SEL Fast SER Protocol provides SER events to an automated data collection system. SEL Fast SER Protocol is available on any rear serial port. Devices with embedded processing capability can use these messages to enable and accept unsolicited binary SER messages from SEL-700G relays.

SEL relays and communications processors have two separate data streams that share the same serial port. The normal serial interface consists of ASCII character commands and reports that are intelligible to people using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information, and then allow the ASCII data stream to continue. This mechanism allows a single communications channel to be used for ASCII communications (e.g., transmission of a long event report) interleaved with short bursts of binary data to support fast acquisition of metering or SER data.

Fast Message Protocol

SEL Fast Message Protocol is a method to input or modify remote analogs in the SEL-700G. These remote analogs can then be used in SEL Math or SELogic control equations. Remote analogs can also be modified via Modbus, DNP3, and IEC 61850.
Ethernet Network Architectures

Figure 27 Simple Ethernet Network Configuration

Figure 28 Ethernet Network Configuration With Dual Redundant Connections (Failover Mode)

Figure 29 Ethernet Network Configuration With Ring Structure (Switched Mode)

Cat 5 shielded twisted pair (STP) cables with RJ45 connectors (SEL-C627/C628) for copper Ethernet ports

OR

Fiber-optic Ethernet cables with LC connectors (SEL-C808) for fiber-optic Ethernet ports

Set Port 1 (Ethernet) settings in each relay.
Additional Features

MIRRORED BITS Relay-to-Relay Communications

The SEL-patented MIRRORED BITS communications technology provides bidirectional relay-to-relay digital communications. MIRRORED BITS can operate independently on as many as two EIA-232 rear serial ports and one fiber-optic rear serial port on a single SEL-700G.

This bidirectional digital communication creates eight additional virtual outputs (transmitted MIRRORED BITS) and eight additional virtual inputs (received MIRRORED BITS) for each serial port operating in the MIRRORED BITS mode (see Figure 30). Use these MIRRORED BITS to transmit/receive information between upstream relays and a downstream relay to enhance coordination and achieve faster tripping for downstream faults. MIRRORED BITS technology also helps reduce total scheme operating time by eliminating the need to assert output contacts to transmit information.

![Figure 30 MIRRORED BITS Transmit and Receive Bits](image)

Status and Trip Target LEDs

The SEL-700G includes 24 tricolor status and trip target LEDs on the front panel. When shipped from the factory, all LEDs are predefined and fixed in settings. You can reprogram these LEDs for specific applications. This combination of targets is explained and shown in Figure 33. Some front-panel relabeling of LEDs may be needed if you reprogram them for unique or specific applications—see Configurable Labels.

Event Messenger Points

The SEL-700G, when used with the SEL-3010 Event Messenger, can allow for ASCII-to-voice translation of as many as 32 user-defined messages, along with analog data that have been measured or calculated by the relay. With this combination, you can receive voice messages on any phone for alerts to transition of any Relay Word bits in the relay.

Verbal notification of breaker openings, fuse failures, RTD alarms, etc. can now be sent directly to your cell phone through the use of your SEL-700G and SEL-3010 (must be connected to an analog telephone line). In addition, messages can include an analog value such as current, voltage, or power measurements made by the SEL-700G.

Configurable Labels

Use the configurable labels to relabel the operator controls and LEDs (shown in Figure 33) to suit the installation requirements. This feature includes preprinted labels (with factory-default text), blank label media, and a Microsoft® Word template on CD-ROM. This allows quick, professional-looking labels for the SEL-700G. Labels may also be customized without the use of a PC by writing the new label on the blank stock provided. The ability to customize the control and indication features allows specific utility or industry procedures to be implemented without the need for adhesive labels. All of the figures in this data sheet show the factory-default labels of the SEL-700G, including the standard model shown in Figure 33.

Web Server

Web Server allows you to communicate with the relay via the Ethernet Port without the need for additional communication software (web browser required). Web Server allows you to access metering and monitoring data, and also supports firmware upgrades.

Firmware Download Via Ethernet Ports

Relay firmware can be securely downloaded to your relay via the Ethernet port. The firmware is digitally signed to prevent malicious modification. Additionally, the Ethernet firmware download allows you to access and update all your network relays simultaneously.
Relay Dimensions

![SEL-700G Dimensions for Rack- and Panel-Mount Models](image)

Hardware Overview

![Typical Connection Diagram](image)

SEL-700G1 Generator Protection Relay

- **Input Power**
- **Output Contacts**
- **Control Inputs**

Optional Input / Output Cards

- 10 RTDs
- 4 Digital Inputs / 4 Digital Outputs
- 3 Digital Inputs / 4 Digital Outputs / 1 Analog Output
- 4 Digital Inputs / 3 Digital Outputs
- 4 Analog Inputs / 4 Analog Outputs

SLOT Z: 4 ACI / 3 AVI CARD

<table>
<thead>
<tr>
<th>CURRENT INPUTS</th>
<th>VOLTAGE INPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAX</td>
<td>IBX</td>
</tr>
<tr>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Z01</td>
<td>Z02</td>
</tr>
</tbody>
</table>

SLOT E: 3 ACI / 2 AVI CARD

<table>
<thead>
<tr>
<th>CURRENT INPUTS</th>
<th>VOLTAGE INPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAY</td>
<td>IBY</td>
</tr>
<tr>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>E01</td>
<td>E02</td>
</tr>
</tbody>
</table>
Figure 33 Dual-Fiber Ethernet, Fast Hybrid 4 DI/4 DO, 10 RTDs, 3 ACI/2 AVI, 4 ACI/3 AVI
(Relay MOT 0700G11ACA9X76850830)
SEL-700GT Intertie

(A) Front Panel With Default Configuration Labels

(B) Rear-Panel View

(C) Side-Panel View

Figure 34 Dual Copper Ethernet, 4 DI/4 DO, 8 DO, 3 ACI/4 AVI, 4 ACI/3 AVI (Relay MOT 0700GT1A2X7585A630)
SEL-700GW Wind Generator

Figure 35 Copper Ethernet, 4 DI/4 DO, 4 AI/4 AO, 3 ACIE, 3 ACIZ (Relay MOT 0700GW1A1A6X77870310)
Applications

SEL-700G1 Generator Relay—Example 1

Figure 36 SEL-700G1 Relay Typical AC Current and Four-Wire Wye Voltage Connection

Figure 37 SEL-700G1 Typical DC External Connections

NOTES:
- IN01-102 and OUT 101-103 are in the “base” relay—Slot A Power Supply card.
- Slot C—Select BDO card, OUT301-OUT308.
- Slot D—Select 3DI/4DO/1AO, IN401-IN403, OUT401-OUT404, or AO401.
- Spares IN403, OUT403-404, AO401, OUT308.
- Use Ethernet Port 1 for Synchrophasors, Modbus, DNP or IEC 61850.
- Use Port 2 for SEL-2600 RTD Module.
- Use Port 3 for SEL-2664 Field Ground Module (with a SEL-2812MR or 2812MT and a C805 fiber-optic cable).
- Settings changes required are not shown.
- Additional I/O and relay logic may be necessary for a specific application.
SEL-700G1 Generator Relay—Example 2

Figure 38 SEL-700G1+ Relay AC Connection Example, Multiple High-Impedance Grounded Generators Connected to a Common Bus, With 67N and Other Protection
Figure 39 SEL-700GT Relay Typical AC Current and Four-Wire Wye Voltage Connection
NOTES:
- OUTxxx requires an additional I/O card in Slot C or D.
- IN101-102 and OUT 101-103 are in the “base” relay.
- Additional I/O and relay logic may be necessary for a specific application.
- Settings changes are not shown.
- RTD Inputs—requires SEL-2600 RTD Module or RTD input card in Slot D.

Figure 40 SEL-700GT Typical DC External Connections

SEL-700GW Wind Generator Relay

Figure 41 SEL-700GW Dual Feeder AC Current Connections
NOTES:
- OUTxxx requires an additional I/O card in Slot C or D.
- IN101-102 and OUT 101-103 are in the “base” relay.
- Additional I/O and relay logic may be necessary for a specific application.
- Settings changes are not shown.
- Field ground element (64F) requires SEL-2664 Field Ground Module.
- RTD Inputs—requires SEL-2600 RTD Module or RTD input card in Slot D.

Figure 42 SEL-700GW Typical DC External Connections
Specifications

Compliance

Designed and manufactured under an ISO 9001 certified quality management system.

47 CFR 15B, Class A

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

UL Listed to U.S. and Canadian safety standards (File E212775, NRGU, NRGU7)

CE Mark

RCM Mark

Hazardous Locations

UL Certified Hazardous Locations to U.S. and Canadian standards CI, I, DIV 2; GP A, B, C, D, T3C, maximum surrounding temperature of 50°C (File E470448)

EU

Ambient air temperature shall not exceed –20°C \(\leq Ta \leq 50°C\)

NOTE: Where so marked, ATEX and UL Hazardous Locations Certification tests are applicable to rated supply specifications only and do not apply to the absolute operating ranges, continuous thermal, or short circuit duration specifications.

General

AC Current Input

Phase and Neutral Currents

- \(I_{\text{NOM}} = 1\) A or 5 A secondary depending on the model
- Measurement Category: II
- \(I_{\text{NOM}} = 5\) A
 - Continuous Rating: \(3 \times I_{\text{NOM}} @ 85°C\) 4 \(\times I_{\text{NOM}} @ 55°C\)
 - A/D Measurement Limit: \(217\) A peak (154 A rms) symmetrical
 - Saturation Current Rating: Linear to 96 A symmetrical
 - 1-Second Thermal: 500 A
 - Burden (per Phase): \(<0.1\) VA @ 5 A
- \(I_{\text{NOM}} = 1\) A
 - Continuous Rating: \(3 \times I_{\text{NOM}} @ 85°C\) 4 \(\times I_{\text{NOM}} @ 55°C\)
 - A/D Measurement Limit: \(43\) A peak (31 A rms) symmetrical
 - Saturation Current Rating: Linear to 19.2 A symmetrical
 - 1-Second Thermal: 100 A
 - Burden (per Phase): \(<0.01\) VA @ 1 A

AC Voltage Inputs

- \(V_{\text{NOM}}\) (L-L secondary)
 - Range: 20–250 V (if \(\text{DELTA}_Y := \text{DELTA}\)) 20–440 V (if \(\text{DELTA}_Y := \text{WYE}\))
 - Rated Continuous Voltage: 300 Vac
 - 10-Second Thermal: 600 Vac

Power Supply

- Relay Start-Up Time: Approximately 5–10 seconds (after power is applied until the ENABLED LED turns on)

High-Voltage Supply

- Rated Supply Voltage: 110–240 Vac, 50/60 Hz 110–250 Vdc
- Input Voltage Range (Design Range): 85–264 Vac 85–275 Vdc
- Power Consumption: \(<50\) VA (ac) \(<25\) W (dc)
- Interruptions: 50 ms @ 125 Vac/Vdc 100 ms @ 250 Vac/Vdc

Low-Voltage Supply

- Rated Supply Voltage: 24–48 Vdc
- Input Voltage Range (Design Range): 19.2–60 Vdc
- Power Consumption: \(<25\) W (dc)
- Interruptions: 10 ms @ 24 Vdc 50 ms @ 48 Vdc

Fuse Ratings

- **LV Power Supply Fuse**
 - Rating: 3.15 A
 - Maximum Rated Voltage: 300 Vdc, 250 Vac
 - Breaking Capacity: 1500 A at 250 Vac
 - Type: Time-lag T

- **HV Power Supply Fuse**
 - Rating: 3.15 A
 - Maximum Rated Voltage: 300 Vdc, 250 Vac
 - Breaking Capacity: 1500 A at 250 Vac
 - Type: Time-lag T

Output Contacts

The relay supports Form A, B, and C outputs.

Dielectric Test Voltage: 2500 Vac

Impulse Withstand Voltage (U_{IMP}): 5000 V

Mechanical Durability: 100,000 no-load operations

Standard Contacts

- **Pickup/Dropout Time:** \(\leq8\) ms (coil energization to contact closure)

DC Output Ratings

- **Rated Operational Voltage:** 250 Vdc
- **Rated Voltage Range:** 19.2–275 Vdc
- **Rated Insulation Voltage:** 300 Vdc
- **Make:** 30 A @ 250 Vdc per IEEE C37.90
- **Continuous Carry:** 6 A @ 70°C 4 A @ 85°C
- **1-Second Thermal:** 50 A
- **Contact Protection:** 360 Vdc, 115 J MOV protection across open contacts

Breaking Capacity (10,000 Operations) per IEC 60255-0-20:1974:

- 24 Vdc 0.75 A L/R = 40 ms
- 48 Vdc 0.50 A L/R = 40 ms
- 125 Vdc 0.30 A L/R = 40 ms
- 250 Vdc 0.20 A L/R = 40 ms

Burden: \(<0.1\) VA

Input Impedance:

- 4 MΩ differential (phase-to-phase)
- 7 MΩ common mode (phase-to-chassis)
Cyclic (2.5 Cycles/Second) per IEC 60255-0-20:1974:
- 24 Vdc: 0.75 A L/R = 40 ms
- 48 Vdc: 0.50 A L/R = 40 ms
- 125 Vdc: 0.30 A L/R = 40 ms
- 250 Vdc: 0.20 A L/R = 40 ms

AC Output Ratings
- Maximum Operational Voltage (Ue) Rating: 240 Vac
- Insulation Voltage (Ui) Rating (excluding EN 61010-1): 300 Vac
- 1-Second Thermal: 50 A
- Contact Rating Designation: B300

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Maximum Current</th>
<th>Max VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Vac</td>
<td>240 Vac</td>
<td>—</td>
</tr>
<tr>
<td>30 A</td>
<td>15 A</td>
<td>3600</td>
</tr>
<tr>
<td>3 A</td>
<td>1.5 A</td>
<td>360</td>
</tr>
</tbody>
</table>

PF < 0.35, 50–60 Hz

Utilization Category: AC-15

<table>
<thead>
<tr>
<th>Operational Voltage (Ue)</th>
<th>120 Vac</th>
<th>240 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Current (Ie)</td>
<td>3 A</td>
<td>1.5 A</td>
</tr>
<tr>
<td>Make Current</td>
<td>30 A</td>
<td>15 A</td>
</tr>
<tr>
<td>Break Current</td>
<td>3 A</td>
<td>1.5 A</td>
</tr>
</tbody>
</table>

Fast Hybrid (High-Speed, High-Current Interrupting)

DC Output Ratings
- Rated Operational Voltage: 250 Vdc
- Rated Voltage Range: 19.2–275 Vdc
- Rated Insulation Voltage: 300 Vdc
- Make: 30 A @ 250 Vdc per IEEE C37.90
- Continuous Carry: 6 A @ 70°C
- 4 A @ 85°C
- 1-Second Thermal: 50 A
- Open State Leakage Current: <500 µA
- MOV Protection (Maximum Voltage): 250 Vac/330 Vdc
- Pickup Time: <50 µs, resistive load
- Dropout Time: 58 ms
- Break Capacity (10,000 Operations) per IEC 60255-0-20:1974:
 - 48 Vdc: 10.0 A L/R = 40 ms
 - 125 Vdc: 10.0 A L/R = 40 ms
 - 250 Vdc: 10.0 A L/R = 20 ms
- Cyclic Capacity (4 Cycles in 1 Second, Followed by 2 Minutes Idle for Thermal Dissipation) per IEC 60255-0-20:1974:
 - 48 Vdc: 10.0 A L/R = 40 ms
 - 125 Vdc: 10.0 A L/R = 40 ms
 - 250 Vdc: 10.0 A L/R = 20 ms

AC Output Ratings
- See AC Output Ratings for Standard Contacts.

Optoisolated Control Inputs

When Used With DC Control Signals
- Pickup/Dropout Time: Depends on the input debounce settings
- 250 V: ON for 200–312.5 Vdc
- OFF below 150 Vdc
- 220 V: ON for 176–275 Vdc
- OFF below 132 Vdc
- 125 V: ON for 100–156.2 Vdc
- OFF below 75 Vdc
- 110 V: ON for 88–137.5 Vdc
- OFF below 66 Vdc
- 48 V: ON for 38.4–60 Vdc
- OFF below 28.8 Vdc
- 24 V: ON for 15–30 Vdc
- OFF for <5 Vdc

When Used With AC Control Signals
- Pickup Time: 2 ms
- Dropout Time: 16 ms
- 250 V: ON for 170.6–312.5 Vac
- OFF below 106 Vac
- 220 V: ON for 150.2–275 Vac
- OFF below 93.3 Vac
- 125 V: ON for 85–156.2 Vac
- OFF below 53 Vac
- 110 V: ON for 75.1–137.5 Vac
- OFF below 46.6 Vac
- 48 V: ON for 32.8–60 Vac
- OFF below 20.3 Vac
- 24 V: ON for 14–30 Vac
- OFF below 5 Vac

Current Draw at Nominal DC Voltage:
- 2 mA (at 220–250 V)
- 4 mA (at 48–125 V)

Rated Impulse Withstand Voltage (Uimp): 4000 V

Analog Output (Optional)

<table>
<thead>
<tr>
<th>1A0</th>
<th>4A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current: 4–20 mA ±20 mA</td>
<td>Voltage: — ±10 V</td>
</tr>
<tr>
<td>Load at 1 mA: — 0–15 kΩ</td>
<td>Load at 20 mA: 0–300 Ω 0–750 Ω</td>
</tr>
<tr>
<td>Load at 10 V: — >2000 Ω</td>
<td>Refresh Rate: 100 ms 100 ms</td>
</tr>
<tr>
<td>% Error, Full Scale, at 25°C: ±1% <±0.55%</td>
<td>Select From: Analog quantities available in the relay</td>
</tr>
</tbody>
</table>

Analog Input (Optional)

| Maximum Input Range: ±20 mA ±10 V |
| Operational range set by user |
| Input Impedance: 200 Ω (current mode) >10 kΩ (voltage mode) |
| Accuracy at 25°C: ±0.050% of full scale (current mode) ±0.025% of full scale (voltage mode) |
| Without user calibration: Better than 0.5% of full scale at 25°C |
| Accuracy Variation With Temperature: ±0.015% per °C of full scale (±0.20 mA or ±10 V) |

Frequency and Phase Rotation

| System Frequency: 50, 60 Hz |
| Phase Rotation: ABC, ACB |
| Frequency Tracking: 15–70 Hz |
Time-Code Input
Format: Demodulated IRIG-B
On (1) State: \(V_{ih} \geq 2.2 \, \text{V} \)
Off (0) State: \(V_{il} \leq 0.8 \, \text{V} \)
Input Impedance: 2 k\(\Omega \)
Synchronization Accuracy
Internal Clock: \(\pm 1 \, \mu\text{s} \)
Synchrophasor Reports
(e.g., MET PM): \(\pm 10 \, \mu\text{s} \)
All Other Reports: \(\pm 5 \, \text{ms} \)
SNTP Accuracy: \(\pm 2 \, \text{ms} \)
PTP Accuracy: \(\pm 1 \, \text{ms} \)

Unsynchronized Clock Drift
Relay Powered: 2 minutes per year, typically

Communications Ports
Standard EIA-232 (2 Ports)
Location: Front Panel
Data Speed: 300–38400 bps

EIA-485 Port (Optional)
Location: Rear Panel
Data Speed: 300–19200 bps

Ethernet Port (Optional)
Single/Dual 10/100BASE-T copper (RJ45 connector)
Single/Dual 100BASE-FX (LC connector)
Standard Multimode Fiber-Optic Port
Location: Rear Panel
Data Speed: 300–38400 bps

Fiber-Optic Ports Characteristics
Port 1 (or 1A, 1B) Ethernet
Wavelength: 1300 nm
Optical Connector Type: LC
Fiber Type: Multimode
Link Budget: 16.1 dB
Typical TX Power: –15.7 dBm
RX Min. Sensitivity: –31.8 dBm
Fiber Size: 62.5/125 \(\mu\text{m} \)
Approximate Range: –6.4 km
Data Rate: 100 Mbps
Typical Fiber Attenuation: –2 dB/km

Port 2 Serial
Wavelength: 820 nm
Optical Connector Type: ST
Fiber Type: Multimode
Link Budget: 8 dB
Typical TX Power: –16 dBm
RX Min. Sensitivity: –24 dBm
Fiber Size: 62.5/125 \(\mu\text{m} \)
Approximate Range: –1 km
Data Rate: 5 Mbps
Typical Fiber Attenuation: –4 dB/km

Optional Communications Cards
Option 1: EIA-232 or EIA-485 communications card
Option 2: DeviceNet communications card

Communications Protocols
SEL, Modbus, DNP, FTP, TCP/IP, Telnet, SNTP, IEEE-1588-2008 firmware-based PTP, IEC 61850 Edition 2, IEC 60870-5-103, PRP, MIRRORED BITS, EVMSG, EtherNet/IP, C37.118 (synchrophasors), and DeviceNet

Operating Temperature
IEC Performance Rating: –40° to +85°C (~40° to +185°F)
(per IEC/EN 60068-2-1 and 60068-2-2)
NOTE: Not applicable to UL applications
NOTE: The front-panel display is impaired for temperatures below –20°C and above +70°C
DeviceNet Communications Card Rating: +60°C (140°F) maximum

Optoisolated Control Inputs:
As many as 26 inputs are allowed in ambient temperatures of 85°C or less.
As many as 34 inputs are allowed in ambient temperatures of 75°C or less.
As many as 44 inputs are allowed in ambient temperatures of 65°C or less.

Operating Environment
Insulation Class: I
Pollution Degree: 2
Overvoltage Category: II
Atmospheric Pressure: 80–110 kPa
Relative Humidity: 5%–95%, noncondensing
Maximum Altitude Without Derating (Consult the Factory for Higher Altitude Derating): 2000 m

Dimensions
144.0 mm (5.67 in) x 192.0 mm (7.56 in) x 147.4 mm (5.80 in)

Weight
2.7 kg (6.0 lb)

Relay Mounting Screw (#8–32) Tightening Torque
Minimum: 1.4 Nm (12 in-lb)
Maximum: 1.7 Nm (15 in-lb)

Terminal Connections
Terminal Block
Screw Size: #6
Ring Terminal Width: 0.310 inch maximum
Terminal Block Tightening Torque
Minimum: 0.9 Nm (8 in-lb)
Maximum: 1.4 Nm (12 in-lb)

Compression Plug Tightening Torque
Minimum: 0.5 Nm (4.4 in-lb)
Maximum: 1.0 Nm (8.8 in-lb)

Compression Plug Mounting Ear Screw Tightening Torque
Minimum: 0.18 Nm (1.6 in-lb)
Maximum: 0.25 Nm (2.2 in-lb)

Product Standards
Electromagnetic Compatibility: IEC 60255-26:2013
IEC 60255-27:2013
UL 508
CSA C22.2 No. 14-05
Type Tests

Environmental Tests

Enclosure Protection:
- IP65 enclosed in panel (2-line display models)
- IP54 enclosed in panel (touchscreen display models)
- IP20 for relay backside panel
- IP50 for terminals enclosed in the dust protection assembly (protection against solid foreign objects only) (SEL Part #915900170).

The 10°C temperature derating applies to the temperature specifications of the relay.

Vibration Resistance:
IEC 60255-21-1:1988
IEC 60255-27:2013, Section 10.6.2.1
Endurance: Class 2
Response: Class 2

Shock Resistance:
IEC 60255-21-2:1988
IEC 60255-27:2013, Section 10.6.2.2
IEC 60255-27:2013, Section 10.6.2.3
Withstand: Class 1
Response: Class 2

Seismic (Quake Response):
IEC 60255-21-3:1993
IEC 60255-27:2013, Section 10.6.2.4
Response: Class 2

Cold:
IEC 60068-2-1:2007
IEC 60255-27:2013, Section 10.6.1.2
IEC 60255-27:2013, Section 10.6.1.4
–40°C, 16 hours

Dry Heat:
IEC 60068-2-2:2007
IEC 60255-27:2013, Section 10.6.1.1
IEC 60255-27:2013, Section 10.6.1.3
85°C, 16 hours

Damp Heat, Steady State:
IEC 60068-2-14:2009
IEC 60255-1:2010, Section 6.12.3.5
–40° to 85°C, ramp rate 1°C/min, 5 cycles

Damp Heat, Cyclic:
IEC 60068-2-30:2001
IEC 60255-27:2013, Section 10.6.1.6
25°–55°C, 6 cycles, 95% relative humidity

Change of Temperature:
IEC 60068-2-14:2009
IEC 60255-1:2010, Section 6.12.3.5
–40° to 85°C, ramp rate 1°C/min, 5 cycles

Dielectric Strength and Impulse Tests

Dielectric (HiPot):
IEC 60255-27:2013, Section 10.6.4.3
IEEE C37.90-2005
1.0 kVac on analog outputs, Ethernet ports
2.0 kVac on analog inputs, IRIG
2.5 kVac on contact I/O
3.6 kVdc on power supply, IN and VN terminals

Impulse:
IEC 60255-27:2013, Section 10.6.4.2
0.5 J, 5 kV on power supply, contact I/O, ac current, and voltage inputs
0.5 J, 530 V on analog outputs
IEEE C37.90:2005
0.5 J, 5 kV
0.5 J, 530 V on analog outputs

RFI and Interference Tests

EMC Immunity
IEC 61000-4-2:2008
IEC 60255-26:2013, Section 7.2.3
IEEE C37.90.3:2001
Severity Level 4
8 kV contact discharge
15 kV air discharge

Radiated RF Immunity:
IEC 61000-4-3:2010
IEC 60255-26:2013, Section 7.2.4
10 V/m
IEEE C37.90.2-2004
20 V/m

Fast Transient, Burst Immunity:
IEC 61000-4-4:2012
IEC 60255-26:2013, Section 7.2.5
4 kV @ 5 kHz
2 kV @ 5 kHz for comm. ports

Surge Immunity:
IEC 61000-4-5:2005
IEC 60255-26:2013, Section 7.2.7
2 kV line-to-line
4 kV line-to-earth

Surge Withstand Capability Immunity:
IEC 61000-4-18:2010
IEC 60255-26:2013, Section 7.2.8
10 Vrms

Conducted RF Immunity:
IEC 61000-4-6:2008
IEC 60255-26:2013, Section 7.2.9

Power Supply Immunity:
IEC 61000-4-11:2004
IEC 61000-4-17:1999
IEC 61000-4-29:2000
IEC 60255-26:2013, Section 7.2.11
IEC 60255-26:2013, Section 7.2.12
IEC 60255-26:2013, Section 7.2.13

EMC Emissions

Conducted Emissions:
IEC 60255-26:2013 Class A
FCC 47 CFR Part 15.107 Class A
ICES-003 Issue 6
EN 55011:2009 + A1:2010 Class A
EN 55022:2010 + AC:2011 Class A
EN 55032:2012 + AC:2013 Class A
CISPR 11:2009 + A1:2010 Class A
CISPR 22:2008 Class A
CISPR 32:2015 Class A

Radiated Emissions:
IEC 60255-26:2013 Class A
FCC 47 CFR Part 15.109 Class A
ICES-003 Issue 6
EN 55011:2009 + A1:2010 Class A
EN 55022:2010 + AC:2011 Class A
EN 55032:2012 + AC:2013 Class A
CISPR 11:2009 + A1:2010 Class A
CISPR 22:2008 Class A
CISPR 32:2015 Class A

Processing Specifications and Oscillography

AC Voltage and Current Inputs:
32 samples per power system cycle

Analog Inputs:
4 samples per power system cycle

Frequency Tracking Range:
15–70 Hz

Digital Filtering:
One-cycle cosine after low-pass analog filtering. Net filtering (analog plus digital) rejects dc and all harmonics greater than the fundamental.
Protection and Control Processing: Processing interval is 4 times per power system cycle (except for math variables and analog quantities, which are processed every 25 ms). The protection elements 40, 51, and 78 are processed twice per cycle. Analog quantities for rms data are determined through use of data averaged over the previous 8 cycles.

Oscillography

- Length: 15, 64, 180 cycles
- Sampling Rate: 32 samples per cycle unfiltered
 4 samples per cycle filtered
- Trigger: Programmable with Boolean expression
- Format: ASCII and Compressed ASCII
 Binary COMTRADE (32 samples per cycle unfiltered)
- Time-Stamp Resolution: 1 ms
- Time-Stamp Accuracy: ±5 ms

Sequential Events Recorder

- Time-Stamp Resolution: 1 ms
- Time-Stamp Accuracy (With Respect to Time Source) for all RWBs except those corresponding to digital inputs (INxxx): ±5 ms
- Time-Stamp Accuracy (With Respect to Time Source) for RWBs corresponding to digital inputs (INxxx): 1 ms

Relay Elements

Instantaneous/Definite Time-Overcurrent (50P, 50G, 50N, 50Q)

- Pickup Setting Range, A secondary
 5 A models: 0.50–96.00 A, 0.01 A steps
 1 A models: 0.10–19.20 A, 0.01 A steps
- Accuracy: ±5% of setting plus ±0.02 • I_{NOM} A secondary (steady-state pickup)
- Time Delay: 0.00–400.00 seconds, 0.01 seconds steps, ±0.5% plus ±0.25 cycle for 50Q
- Pickup/Dropout Time: <1.5 cycle

Inverse-Time Overcurrent (51P, 51G, 51N, 51Q)

- Pickup Setting Range, A secondary
 5 A models: 0.50–16.00 A, 0.01 A steps
 1 A models: 0.10–3.20 A, 0.01 A steps
- Accuracy: ±5% of setting plus ±0.02 • I_{NOM} A secondary (steady-state pickup)
- Time Dial
 US: 0.50–15.00, 0.01 steps
 IEC: 0.05–1.00, 0.01 steps
- Accuracy: ±1.5 cycles plus ±4% between 2 and 30 multiples of pickup (within rated range of current)

Differential (87)

- Unrestrained Pickup Range: 1.0–20.0 in per unit of TAP
- Restrained Pickup Range: 0.10–1.00 in per unit of TAP
- Pickup Accuracy (A secondary)
 5 A Model: ±5% plus ±0.10 A
 1 A Model: ±5% plus ±0.02 A

Inverse-Time Undervoltage (27I)

- Setting Range: OFF, 2.00–300.00 V (Phase elements, positive-sequence elements, phase-to-phase elements with delta inputs or synchronism voltage input)
- Setting Range: OFF, 2.00–520.00 V (Phase-to-phase elements with wye inputs)
- Pickup Range: 2.00–300.00 V (Phase elements, positive-sequence elements, phase-to-phase elements with delta inputs or synchronism voltage input)
- Pickup Range: 2.00–520.00 V (Phase-to-phase elements with wye inputs)
- Accuracy: ±1% of setting plus ±0.5 V
In a natural representation:

Inverse-Time Overvoltage (59I)

Setting Range:
- OFF, 2.00–300.00 V (Phase elements, sequence elements, or phase-to-phase elements with delta inputs, neutral voltage input, or synchronism voltage input)
- OFF, 2.00–520.00 V (Phase-to-phase elements with wye inputs)

Accuracy:
- ±1% of setting plus ±0.5 V
- ±1.5 cyc plus ±4% between 1.05 and 5.5 multiples of pickup
- ±0.10 A • (L-L voltage secondary) and ±5% of setting at unity power factor for power elements and zero power factor for reactive power element (5 A nominal)
- ±0.02 A • (L-L voltage secondary) and ±5% of setting at unity power factor for power elements and zero power factor for reactive power element (1 A nominal)

Pickup/Dropout Time: <10 cycles

Time Delay: 0.00–240.00 seconds, 0.01 second steps

Accuracy:
- ±0.5% plus ±0.25 cycle

Frequency (81)

Setting Range: Off, 15.00–70.00 Hz

Pickup/Dropout Time: <4 cycles

Time Delay: 0.00–400.00 seconds, 0.01 second steps

Accuracy: ±0.5% plus ±0.25 cycle

RTD Protection

Setting Range: Off, 1°–250°C

RTD Open-Circuit Detection: >250°C

RTD Short-Circuit Detection: <–50°C

RTD Types: PT100, NI100, NI120, CU10

RTD Lead Resistance: 25 ohm max. per lead

Update Rate: <3 s

Noise Immunity on RTD Inputs: To 1.4 Vac (peak) at 50 Hz or greater frequency

Distance Element (21)

Two zones of compensator distance elements with load encroachment block

Reach Pickup Range:
- 5 A model: 0.1–100.0 ohms
- 1 A model: 0.5–500.0 ohms

Offset Range:
- 5 A model: 0.0–10.0 ohms
- 1 A model: 0.0–50.0 ohms

Steady-State Impedance Accuracy:
- 5 A model: ±5% plus ±0.1 ohm
- 1 A model: ±5% plus ±0.5 ohm

Pickup Time: 33 ms at 60 Hz (Max)

Definite-Time Delay: 0.00–400.00 s

Accuracy: ±0.1% plus ±0.25 cycle

Minimum Phase Current:
- 5 A model: 0.5 A
- 1 A model: 0.1 A

Maximum Torque Angle Range:
- 90°–45°, 1° step

Loss-of-Field Element (40)

Two Mho Zones

Zone 1 Offset:
- 5 A model: –50.0 to 0.0 ohms
- 1 A model: –250.0 to 0.0 ohms

Zone 2 Offset:
- 5 A model: –50.0 to 50.0 ohms
- 1 A model: –250.0 to 250.0 ohms

Zone 1 and Zone 2 Diameter:
- 5 A model: 0.1–100.0 ohms
- 1 A model: 0.5–500.0 ohms
Steady-State Impedance Accuracy:
- 5 A model: ±0.1 ohm plus ±5% of (offset + diameter)
- 1 A model: ±0.5 ohm plus ±5% of (offset + diameter)

Minimum Pos.-Seq. Signals:
- 5 A model: 0.25 V (V1), 0.25 A (I1)
- 1 A model: 0.25 V (V1), 0.05 A (I1)

Directional Element Angle: –20.0° to 0.0°

Pickup Time:
- 3 cycles (Max)

Zone 1 and Zone 2 Definite-Time Delays: 0.00–400.00 s

Accuracy: ±0.1% plus ±1/2 cycle

Voltage-Restrained Phase Time-Overcurrent Element (51V)

Phase Pickup (A secondary):
- 5 A Model: 2.0–16.0 A
- 1 A Model: 0.4–3.2 A

Steady-State Pickup Accuracy:
- 5 A Model: ±5% plus ±0.10 A
- 1 A Model: ±5% plus ±0.02 A

Time Dials:
- US: 0.50–15.00, 0.01 steps
- IEC: 0.05–1.00, 0.01 steps

Accuracy: ±4% plus ±1.5 cycles for current between 2 and 20 multiples of pickup (within rated range of current)

Linear Voltage Restraint Range:
- 0.125–1.000 per unit of V_{NOM}

Voltage-Controlled Phase Time-Overcurrent Element (51C)

Phase Pickup (A secondary):
- 5 A Model: 0.5–16.0 A
- 1 A Model: 0.1–3.2 A

Steady State Pickup Accuracy:
- 5 A Model: ±5% plus ±0.10 A
- 1 A Model: ±5% plus ±0.02 A

Time Dials:
- US: 0.50–15.00, 0.01 steps
- IEC: 0.05–1.00, 0.01 steps

Accuracy: ±4% plus ±1.5 cycles for current between 2 and 20 multiples of pickup (within rated range of current)

100 Percent Stator Ground Protection (64G)

Neutral Fundamental

Overvoltage (64G1):
- OFF, 0.1–150.0 V

Steady-State Pickup Accuracy:
- ±5% plus ±0.1 V

Pickup Time:
- 1.5 cycles (Max)

Definite-Time Delay:
- 0.00–400.00 s

Accuracy: ±0.1% plus ±0.25 cycle

Third-Harmonic Voltage Differential or Third-Harmonic Neutral Undervoltage Pickup 64G2: 0.1–20.0 V

Steady-State Pickup Accuracy:
- ±5% plus ±0.1 V

Field Ground Protection (64F)

(Requires SEL-2664 Field Ground Module)

Field Ground Protection Element:
- 0.5–200.0 ohms, 0.1 kilohm step

Pickup Accuracy:
- ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc
- ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc

(VF is the generator field winding excitation dc voltage)

Field Ground Protection Accuracy:
- ±4% plus ±0.5 ms at 60 Hz for I_{L1} (above 1.05 multiples of pickup)

Ground Differential Elements (87N)

Ground Differential Pickup:
- 5 A Model: 0.10*CTR/CTRN – 15.00 A
- 1 A Model: 0.02*CTR/CTRN – 3.00 A

(Ratio CTR/CTRN must be within 1.0–40.0)

Steady-State Pickup Accuracy:
- 5 A Model: ±5% plus ±0.10 A
- 1 A Model: ±5% plus ±0.02 A

Pickup Time:
- 1.5 cycles (Max)

Time Delay Range:
- 0.00–5.00 s

Time Delay Accuracy: ±0.5% plus ±1/4 cycle

Negative-Sequence Overcurrent Elements (46)

Definite-Time and Inverse-Time Neg.-Seq. I^2 Pickup:
- 2%–100% of generator rated secondary current

Generator Rated Secondary Current:
- 5 A Model: 1.0–10.0 A secondary
- 1 A Model: 0.2–2.0 A secondary

Steady-State Pickup:
- 5 A Model: ±0.025 A plus ±3%
- 1 A Model: ±0.005 A plus ±3%

Pickup Time:
- 50 ms at 60 Hz (Max)

Definite-Time Delay Setting Range:
- 0.02–999.90 s

Maximum Definite-Time Delay Accuracy: ±0.1% plus ±4.2 ms at 60 Hz

Inverse-Time Element Time Dial:
- K = 1 to 100 s

Linear Reset Time:
- 240 s fixed

Inverse-Time Timing Accuracy:
- ±4% plus ±0.5 ms at 60 Hz for I_{L1} (above 1.05 multiples of pickup)
Rate-of-Change of Frequency (81R)

- **Pickup Setting Range:** Off, 0.10–15.00 Hz/s
- **Accuracy:** ±0.100 mHz/s plus ±3.33% of pickup
- **Trend Setting:** INC, DEC, ABS
- **Pickup/Dropout Time:** 3–30 cycles, depending on pickup setting
- **Pickup/Dropout Delay Range:** 0.10–60.00/0.00–60.00 s, 0.1 s increments
- **Voltage Supervision (Positive Sequence) Pickup Range:** Off, 0.125–300.0 V, 0.1 V increments

Synchronism Check (25Y) for Tie Breaker

- **Voltage Window High Setting Range:** 0.00–300.00 V
- **Voltage Window Low Setting Range:** 0.00–300.00 V
- **Steady-State Voltage Accuracy:** ±5% plus ±0.0 V (over the range of 12.5–300 V)

Synchronism Check (25X) for Generator Breaker

- **Voltage Window High Setting Range:** 0.00–300.00 V
- **Voltage Window Low Setting Range:** 0.00–300.00 V
- **Steady-State Voltage Accuracy:** ±5% plus ±0.0 V (over the range of 12.5–300 V)

Generator Thermal Model (49T)

- **Thermal Overload Trip Pickup Level:** 30–250% of full load current (full load current INOM range: 0.2–2.0 • INOM, where INOM = 1 A or 5 A)
- **TCU Alarm Pickup Level:** 50–99% Thermal Capacity Used
- **Time-Constant Range (2):** 1–1000 minutes
- **Time Accuracy Pickup/Dropout Time:** ±(5% + 25 ms) at multiple-of-pickup ±2, 50/60 Hz (preload = 0)

Autosynchronizing

- **Frequency Matching**
 - **Speed (Frequency) Control Outputs:**
 - Raise: Digital output, adjustable pulse duration and interval
 - Lower: Digital output, adjustable pulse duration and interval
 - **Frequency Synchronism Timer:** 5–3600 s, 1 s increments
 - **Frequency Adjustment Rate:** 0.01–10.00 Hz/s, 0.01 Hz/s increment
 - **Frequency Pulse Interval:** 0.10–60.00 s, 0.01 s increment
 - **Kick Pulse Interval:** 0.10–60.00 s, 0.01 s increments
- **Voltage Matching**
 - **Voltage Control Outputs:**
 - Raise: Digital Output, adjustable pulse duration and interval
 - Lower: Digital Output, adjustable pulse duration and interval
 - **Voltage Synchronized Timer:** 5–3600 s, 1 s increments
 - **Voltage Adjustment Rate (Control System):** 0.01–30.00 V/s, 0.01 V/s increment
 - **Voltage Pulse Interval:** 0.10–60.00 s, 0.01 s increment
 - **Voltage Control Pulse Minimum:** 0.02–2.00 s, 0.01 s increments
 - **Voltage Control Pulse Maximum:** 0.02–2.00 s, 0.01 s increments
- **Timing Accuracy:** ±0.5% plus ±1/4 cycle

Metering Accuracy

Accuracies are specified at 20°C, nominal frequency, ac currents within (0.2–20.0) • INOM A secondary, and ac voltages within 50–250 V secondary unless otherwise noted.

- **Phase Currents:** ±1% of reading, ±1° (±2.5° at 0.2–0.5 A for relays with INOM = 1 A)
- **3-Phase Average Current:** ±1% of reading
- **Differential Quantities:** ±5% of reading plus ±0.1 A (5 A nominal), ±0.02 A (1 A nominal)
- **Current Harmonics:** ±5% of reading plus ±0.1 A (5 A nominal), ±0.02 A (1 A nominal)
- **JG (Residual Current):** ±2% of reading, ±2° (±5.0° at 0.2–0.5 A for relays with INOM = 1 A)
- **IN (Neutral Current):** ±1% of reading, ±1° (±2.5° at 0.2–0.5 A for relays with INOM = 1 A)
- **3I2 Negative-Sequence Current:** ±2% of reading
- **System Frequency:** ±0.01 Hz of reading for frequencies within 20–70 Hz (V1 > 60 V)
- **Line-to-Line Voltages:** ±1% of reading, ±1° for voltages within 24–264 V
- **3-Phase Average Line-to-Line Voltage:** ±1% of reading for voltages within 24–264 V
- **Line-to-Ground Voltages:** ±1% of reading for voltages within 24–264 V
- **3-Phase Average Line-to-Ground Voltages:** ±1% of reading for voltages within 24–264 V
- **Voltage Harmonics:** ±5% of reading plus ±0.5 V
- **3V2 Negative-Sequence Voltage:** ±2% of reading for voltages within 24–264 V
- **Real 3-Phase Power (kW):** ±3% of reading for 0.10 < pf < 1.00
Reactive 3-Phase
 Power (kVAR): ±3% of reading for 0.00 < pf < 0.90
Apparent 3-Phase
 Power (kVA): ±3% of reading
Power Factor: ±2% of reading
RTD Temperatures: ±2°C

Synchrophasor Accuracy

Maximum Message Rate
- Nominal 60 Hz System: 60 messages per second
- Nominal 50 Hz System: 50 messages per second

Accuracy for Voltages
Level 1 compliant as specified in IEEE C37.118 under the following conditions for the specified range.

Conditions
- At maximum message rate
- When phasor has the same frequency as the positive-sequence tracking quantity (see Table K.10)
- Frequency-based phasor compensation is enabled (PHCOMP := Y)
- The narrow bandwidth filter is selected (PMAPP := N)

Range
- Frequency: ±5.0 Hz of nominal (50 or 60 Hz)
- Magnitude: 30 V–250 V
- Phase Angle: –179.99° to 180°

Out-of-Band Interfering Frequency (Fs):
- 10 Hz ≤ Fs ≤ (2 • FNOM)

Accuracy for Currents
Level 1 compliant as specified in IEEE C37.118 under the following conditions for the specified range.

Conditions
- At maximum message rate
- When phasor has the same frequency as the positive-sequence tracking quantity (see Table K.10)
- Frequency-based phasor compensation is enabled (PHCOMP := Y)
- The narrow bandwidth filter is selected (PMAPP := N)

Range
- Frequency: ±5.0 Hz of nominal (50 or 60 Hz)
- Magnitude: (0.4–2) • INOM (INOM = 1 A or 5 A)
- Phase Angle: –179.99° to 180°

Out-of-Band Interfering Frequency (Fs):
- 10 Hz ≤ Fs ≤ (2 • FNOM)

* Front port serial cable (non-fiber) lengths assumed to be <3 m.