As Many as Four-Terminal Differential and REF Protection

New Features

➤ Disconnect control from the Bay Screens application.
➤ Three-position disconnects for increased safety.
➤ A built-in web server that simplifies access to relay data and supports firmware upgrade.
➤ Faster firmware downloads via the Ethernet port.
➤ IEEE 1588-2008 firmware-based Precision Time Protocol (PTP) provides ease of integration.
➤ EtherNet/IP provides ease of integration for industrial automation applications.
➤ IEC 61850 Test Mode support with standard operating modes On, Blocked, Test, Test/Blocked, and Off for easy commissioning.
Major Features and Benefits

The SEL-787 Transformer Protection Relay provides unsurpassed protection, integration, and control features in a flexible, compact, and cost-effective package. The SEL-787 offers an extensive variety of protection features, depending on the model and options selected. In this document, SEL-787 refers to all the models in Table 1. For protection functions specific to a given MOT, the relay is referred to as SEL-787-4X, SEL-787-3E, SEL-787-3S, SEL-787-2X, SEL-787-21, or SEL-787-2E explicitly, where needed. Table 2 shows the protection features available across models.

Table 1 Current (ACI) and Voltage (AVI) Card Selection for SEL-787 Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description/Application</th>
<th>Slot Z Card (MOT Digits)</th>
<th>Slot Z Inputs</th>
<th>Slot E Card (MOT Digits)</th>
<th>Slot E Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>787-2X</td>
<td>2 Winding/Terminal Current Differential</td>
<td>6ACI (81, 82, 85)</td>
<td>IAW1, IBW1, ICW1, IAW2, IBW2, ICW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>787-21</td>
<td>2 Winding/Terminal Current Differential</td>
<td>6ACI (81, 82, 85)</td>
<td>IAW1, IBW1, ICW1, IAW2, IBW2, ICW2</td>
<td>1ACI (A6, A7)</td>
<td>IN</td>
</tr>
<tr>
<td>787-2E</td>
<td>2 Winding/Terminal Current Differential</td>
<td>6ACI (81, 82, 85)</td>
<td>IAW1, IBW1, ICW1, IAW2, IBW2, ICW2</td>
<td>1ACI/3AVI (78, 79)</td>
<td>IN, VA, VB, VC</td>
</tr>
<tr>
<td>787-3E</td>
<td>3 Winding/Terminal Current Differential</td>
<td>6ACI (81, 82, 85)</td>
<td>IAW1, IBW1, ICW1, IAW2, IBW2, ICW2</td>
<td>4ACI/3AVI (72, 73, 76, 77)</td>
<td>IAW3, IBW3, ICW3, IN, VA, VB, VC</td>
</tr>
<tr>
<td>787-3S</td>
<td>3 Winding/Terminal Current Differential</td>
<td>6ACI (81, 82, 85)</td>
<td>IAW1, IBW1, ICW1, IAW2, IBW2, ICW2</td>
<td>3ACI/4AVI (71, 75)</td>
<td>IAW3, IBW3, ICW3, VS/VBAT, VA, VB, VC</td>
</tr>
<tr>
<td>787-4X</td>
<td>4 Winding/Terminal Current Differential</td>
<td>6ACI (81, 82, 85)</td>
<td>IAW1, IBW1, ICW1, IAW2, IBW2, ICW2</td>
<td>6ACI (A1, A2, A5)</td>
<td>IAW3, IBW3, ICW3, IAW4, IBW4, ICW4</td>
</tr>
</tbody>
</table>

Table 2 SEL-787 Protection Elements (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Protection Elements</th>
<th>2 Windings</th>
<th>2 Windings With IN Channel</th>
<th>2 Windings With IN Channel and 3-Phase Voltages</th>
<th>3 Windings With IN Channel and 3-Phase Voltages</th>
<th>3 Windings With IN Channel and 3-Phase Voltages</th>
<th>4 Windings</th>
</tr>
</thead>
<tbody>
<tr>
<td>87 Phase Differential</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>REF Restricted Earth Fault (REF)</td>
<td>Xa</td>
<td>Xa</td>
<td>Xa</td>
<td>Xa</td>
<td>Xa</td>
<td>Xa</td>
</tr>
<tr>
<td>50P Phase Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>50Q Neg.-Seq. Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>50G Ground Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>50N Neutral Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>51P Phase Time-Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>51Q Neg.-Seq. Time-Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>51G Ground Time-Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>51PC Combined Winding Phase Time-Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>51GC Combined Winding Ground Time-Overcurrent</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
➤ Standard Protection Features. Use standard dual-slope differential protection with harmonic blocking and restraint for as many as four windings and as many as three independent REF elements for sensitive ground-fault detection in grounded wye-transformers. Refer to Table 3 for the available REF elements. The relay also includes phase, negative-sequence, residual ground, and neutral-ground overcurrent elements for backup protection. Breaker failure protection for as many as four three-pole breakers is standard.

➤ Additional Protection Features. Take advantage of the SEL-787-3E/3S/2E models volts/hertz protection with frequency tracking from 15 to 70 Hz for generator step-up and variable frequency applications. Use over- and underfrequency and over- and undervoltage elements to implement load shedding and other control schemes on the relay.

Table 2 SEL-787 Protection Elements (Sheet 2 of 2)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>51N Neutral Time-Overcurrent</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27P Phase Undervoltage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27PP Phase-to-Phase Undervoltage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27S VS Channel Undervoltage</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27I Inverse-Time Undervoltage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59P Phase Overvoltage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59PP Phase-to-Phase Overvoltage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59Q Neg.-Seq. Overvoltage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59G Ground Overvoltage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>59S VS Channel Overvoltage</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59I Inverse-Time Overvoltage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24 Volts/Hz</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25 Synchronism Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>32 Directional Power</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>49RTD Resistance Temperature Detector (RTDs)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>60LOP Loss of Potential (LOP)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>81 Over- and Underfrequency</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BF Breaker Failure</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* Refer to Table 3 for the available REF elements.

Table 3 Available Differential and REF Elements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Protection Windings (Standard)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>REF Elements (Standard)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Differential Protection Windings (Winding 3 Configured for REF)</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>REF Elements (Winding 3 Configured for REF)</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
➤ **Synchronism Check/Station DC Battery Monitor.** Program the VS/VBAT voltage channel in the SEL-787-3S model to perform a synchronism check across a circuit breaker or to monitor dc voltage levels of the substation battery.

➤ **Transformer Monitoring.** Measure accumulated through-fault levels with the transformer through-fault monitor. Additionally, use the optional 4–20 mA or RTD thermal inputs to monitor ambient, load tap changer (LTC) tank, and transformer oil temperatures.

➤ **Operator Controls.** Take advantage of eight programmable front-panel pushbuttons, each with two programmable tricolor LEDs, for various uses, such as easy trip and close control and status indication for all the breakers. Use the operator control interface pushbuttons to easily implement local and remote operator control schemes using 32 local and 32 remote control bits. Use SELOGIC® control equations and slide-in, configurable front-panel labels to change the function and identification of target LEDs and operator control pushbuttons and LEDs.

➤ **Integrated Web Server.** Log in to the built-in web server to view metering and monitoring data and to download events. Use the web server to view relay settings and to perform relay firmware upgrades.

➤ **Relay and Logic Settings Software.** Reduce engineering costs by using acSELERATOR QuickSet® SEL-5030 Software for relay settings and logic programming and to simplify development of SELOGIC control equations. Verify proper CT polarity and phasing through use of the built-in phasor display.

➤ **Metering and Reporting.** Use built-in metering functions to eliminate separately mounted metering devices. Analyze Sequential Events Recorder (SER) reports and oscillographic event reports for rapid commissioning, testing, and post-fault diagnostics. Unsolicited SER protocol allows station-wide collection of binary SER messages.

➤ **Front-Panel HMI.** Navigate the relay HMI using a 2 x 16-character LCD or optional 5-inch, color, 800 x 480-pixel touchscreen display.

➤ **Additional Standard Features.** Further enhance your power system protection by taking advantage of several other SEL-787 standard features in communication, monitoring, and support. Modbus RTU, Event Messenger support, MIRRORED Bits® communications, as well as load profile and breaker wear monitoring all come standard with the SEL-787. The relay also supports 12 additional external RTDs (SEL-2600 RTD Module), IRIG-B input, advanced SELOGIC control equations, 128 remote analogs, IEEE C.37.118-2005-compliant synchrophasor protocol, configurable labels, and an SEL-2812 compatible ST fiber-optic serial port.

➤ **Optional Features.** Communicate with a number of additional optional communications protocols and ports, digital/analog I/O, and RTDs. Optional communications protocols include IEC 61850 Edition 2, Modbus TCP/IP, Simple Network Time Protocol (SNTP), IEEE 1588-2008 firmware-based PTP, PRP for dual Ethernet models, DNP3 LAN/WAN, DNP3 serial, and IEC 60870-5-103. Elective communications ports include EIA-232 or EIA-485 and single or dual, copper or fiber-optic Ethernet ports. Several digital/analog I/O options are available. These include 4 AI/4 AO, 4 DI/4 DO, 8 DI, 8 DO, 3 DI/4 DO/1 AO, 4 DI/3 DO, and 14 DI. An optional 10 internal RTD card is also available for the SEL-787 relay. Conformal coating for chemically harsh and/or high moisture environments is also available as an option.

➤ **Language Support.** Choose English or Spanish for your serial ports, including the front-panel serial port. The standard relay front-panel overlay is in English; a Spanish overlay is available as an ordering option.
Functional Overview

Figure 1 SEL-787-3E Functional Diagram

- Sequential Events Recorder
- Event Reports
- Web Server
- Synchronized Data and IEEE C37.118-2005 Compliant Protocol
- Two Inputs and Three Outputs Standard
- I/O Expansion**—Additional Contact Inputs/Outputs, Analog Inputs/Outputs, and RTD Inputs
- Single or Dual Ethernet Copper or Fiber-Optic Communications Port**
- Battery-Backed Clock, IRIG-B Time Synchronization
- Instantaneous, Differential, Harmonic, and RMS Metering
- Programmable Pushbuttons and LED Indicators
- Through-Fault Monitoring
- Transformer Thermal Monitoring
- Circuit Breaker Contact Wear Monitor
- Advanced SELinux Control Equations
- 32 Programmable Display Messages
- Maxima B/S Communications
- Front-Panel Programmable Tricolor LED Targets
- Front-Panel HMI With 2 x 16-Character LCD
- 5-inch, Color, 800 x 480-Pixel Touchscreen Display*

*optional functions
Figure 2 SEL-787-3S Functional Diagram

- Sequential Events Recorder
- Event Reports
- Web Server
- Synchrophasor Data and IEEE C37.118-2005 Compliant Protocol
- Two Inputs and Three Outputs Standard
- I/O Expansion*—Additional Contact Inputs/Outputs, Analog Inputs/Outputs, and RTD Inputs
- Single or Dual Ethernet Copper or Fiber-Optic Communications Port*
- Battery-Backed Clock, IRIG-B Time Synchronization
- Instantaneous, Differential, Harmonic, and RMS Metering
- Programmable Pushbuttons and LED Indicators
- Through-Fault Monitoring
- Transformer Thermal Monitoring
- Circuit Breaker Contact Wear Monitor
- Advanced SELoc Control Equations
- 32 Programmable Display Messages
- Missing BAC Communications
- Front-Panel Programmable Tricolor LED Targets
- Front-Panel HMI With 2 x 16-Character LCD
- 5-Inch, Color, 800 x 480-Pixel Touchscreen Display*

*Optional Functions
Figure 3 SEL-787-4X Functional Diagram
SEL-787-2E/21/2X Transformer Protection Relay

- Sequential Events Recorder
- Event Reports
- Web Server
- Synchrophasor Data and IEEE C37.118-2005 Compliant Protocol
- Two Inputs and Three Outputs Standard
- I/O Expansion—Additional Contact Inputs/Outputs, Analog Inputs/Outputs, and RTD Inputs
- Single or Dual Ethernet Copper or Fiber-Optic Communications Port*
- Battery-Backed Clock, IRIG-B Time Synchronization
- Instantaneous, Differential, Harmonic, and RMS Metering
- Programmable Pushbuttons and LED Indicators
- Through-Fault Monitoring
- Transformer Thermal Monitoring
- Circuit Breaker Contact Wear Monitor
- Advanced SELOGIC Control Equations
- 32 Programmable Display Messages
- MIRROR BITS Communications
- Front-Panel Programmable Tricolor LED Targets
- Front-Panel HMI With 2 x 16-Character LCD
- 5-Inch, Color, 800 x 480-Pixel Touchscreen Display*
- Neutral and REF elements are available in the SEL-787-21/2E models only
- Voltage and power elements are available in the SEL-787-2E model only

*Optional Functions

Figure 4 SEL-787-2E/21/2X Functional Diagram
Protection Features

The SEL-787 relay offers a dual-slope differential characteristic for transformer differential protection. The SEL-787 includes a complete set of phase, negative-sequence, and residual overcurrent elements for each terminal (winding), as well as REF and neutral-overcurrent elements for grounded wye transformers.

Use as many as 12 independent RTD-driven thermal elements with trip and alarm levels to monitor ambient and equipment temperatures throughout the substation.

For the optional volts/hertz element, you can add three-phase voltage inputs that give the SEL-787 volts/hertz protection with definite-time and time-delay characteristics, along with directional power, over- and underfrequency, and over- and undervoltage elements with two independent pickup levels and time delays.

Transformer Differential

The SEL-787 has three restrained differential elements (87R). These elements use operate and restraint quantities calculated from as many as four winding input currents. Set the differential elements with either single- or dual-slope percentage differential characteristics. Figure 5 illustrates a dual-slope setting. The percent-slope characteristic helps prevent undesired relay operation because of a possible unbalance between CTs during external faults. CT unbalance can result from TAP changing in the power transformer and error difference between the CTs on either side of a power transformer.

Figure 5 Dual-Slope Restrained Differential Characteristic

With the SEL-787, you can choose harmonic blocking, harmonic restraint, or both, to provide reliable differential protection during transformer inrush conditions. Even-numbered harmonics (second and fourth) provide security during energization, while fifth-harmonic blocking provides security for overexcitation conditions. Set second-, fourth-, and fifth-harmonic thresholds independently.

An additional alarm function for the fifth-harmonic current employs a separate threshold and an adjustable timer to warn of overexcitation. This may be useful for transformer applications in or near generating stations. A set of unrestrained differential current elements simply compares the differential operating current quantity to a setting value, typically about 10 times the TAP setting. This pickup setting is only exceeded for internal faults.

The three independent unrestrained differential elements (87U) provide rapid assertion without delay when differential operate current levels exceed the 87U pickup threshold that is set. Typical 87U pickup level settings are between 8 and 10 per unit of the operate current.

Restricted Earth Fault Protection

Apply the REF protection feature to provide sensitive detection of internal ground faults on grounded wye-connected transformer windings and auto-transformers. Refer to Table 3 for the available REF elements across the models. Polarizing current is derived from the residual current calculated for the protected winding(s). A sensitive directional element determines whether the fault is internal or external. Zero-sequence current thresholds supervise tripping.

Overcurrent Protection

The SEL-787 offers instantaneous overcurrent and time-overcurrent elements. All the elements can be controlled individually by using the SELOGIC torque control equations associated with the element.

Instantaneous Overcurrent Elements

The following instantaneous overcurrent elements are available in the SEL-787.

➤ Four instantaneous phase overcurrent (50P) elements per winding that operate on the maximum of the phase currents. A peak detection algorithm is used to enhance element sensitivity during high-fault current conditions where severe CT saturation may occur.

➤ Per-phase instantaneous overcurrent (50P) elements, one element per phase, that operate on the corresponding phase current of Winding 3 (only available on models with Winding 3). A peak detection algorithm is used to enhance element sensitivity during high-fault current conditions where severe CT saturation may occur.

➤ Two instantaneous negative-sequence overcurrent (50Q) elements per winding that operate on the calculated negative-sequence current.

➤ Two residual instantaneous overcurrent (50G) elements per winding that operate on the calculated residual (3I0) current.
Two neutral instantaneous overcurrent (50N) elements that operate on the neutral current associated with the neutral channel (MOT dependent).

Time-Overcurrent Elements
The time-overcurrent elements support the IEC and U.S. (IEEE) time-overcurrent characteristics shown in Table 4.

<table>
<thead>
<tr>
<th>Time-overcurrent Elements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One maximum phase time-overcurrent (51P) element per winding that operates on the maximum of the corresponding winding phase currents.</td>
<td></td>
</tr>
<tr>
<td>Three per-phase (A-, B-, and C-phase) time-overcurrent (51P) elements, one element per phase, that operate on the corresponding phase current of Winding 3 (only available on models with Winding 3).</td>
<td></td>
</tr>
<tr>
<td>One negative-sequence time-overcurrent (51Q) element per winding that operates on the calculated negative-sequence current.</td>
<td></td>
</tr>
<tr>
<td>One residual time-overcurrent (51G) element per winding that operates on the calculated residual (3I0) current.</td>
<td></td>
</tr>
<tr>
<td>One neutral time-overcurrent (51N) element that operates on the neutral current associated with the neutral channel (MOT dependent).</td>
<td></td>
</tr>
</tbody>
</table>

Combined Time-Overcurrent Elements
The combined time-overcurrent elements can be used for transformers connected to a ring-bus or breaker and one-half systems. The SEL-787-4X/2E/3S models allow you to combine Winding 1 and Winding 2 and/or Winding 3 and Winding 4 currents. The following combined time-overcurrent elements are available:

1. Two phase time-overcurrent (51P) elements, one each for combined Windings 1 and 2 and Winding 3 and 4, that operate on the maximum of the corresponding combined phase currents.
2. Two zero-sequence time-overcurrent (51G) elements, one each for combined Windings 1 and 2 and Winding 3 and 4, that operate on the calculated zero-sequence current of the corresponding combined currents.

Breaker Failure Protection
The SEL-787 offers breaker failure protection for as many as four three-pole breakers. Use breaker failure detection to issue retrip commands to the failed breaker or to trip adjacent breakers using the relays contact output logic or communications-based tripping schemes.

Breaker failure is initiated by the breaker failure initiate (BFI) SELOGIC input. The BFI input is typically driven by local and remote open/trip commands to the breaker. Once the BFI input is received, the breaker failure element monitors positive- and negative-sequence current magnitudes and the breaker auxiliary contacts to determine when to initiate the breaker failure delay timer. If current or breaker auxiliary contact status does not indicate an open breaker condition within the time set by the breaker failure delay timer, the element issues a breaker failure trip output.

Volts/Hertz Protection
Overexcitation occurs when the magnetic core of a power apparatus becomes saturated. When saturation occurs, stray flux is induced in nonlaminated components, which can result in overheating. By ordering the voltage option for the SEL-787, you can add a volts/hertz element to detect overexcitation. An SEL-787 with optional voltage inputs provides a sensitive definite-time delayed element, plus a tripping element with a composite operating time.

For example, the relay calculates the transformer volts/hertz as a percentage of nominal, based on measured values and the nominal voltage and frequency settings. The relay starts a timer when the system voltage causes an excursion that exceeds the volts/hertz overexcitation setting. If the condition remains for the set time delay, the relay asserts and typically provides an alarm function. The element is supervised by the SELOGIC torque control equation, which enables or disables the element as required by the application.

Use the SEL-5806 Curve Designer Software to set the user-defined curve (see Figure 7). For tripping, the relay provides a time-integrating element with a settable operating characteristic. You can set the relay element to operate as an inverse-time element; a user-defined curve element; a composite element with an inverse-time...
characteristic and a definite-time characteristic; or a
dual-level, definite-time element.

For any of these operating characteristics, the element
provides a linear reset characteristic with a settable reset
time. The torque control setting also supervises this
element. The tripping element has a percent-travel
operating characteristic similar to one used by an
induction-disk, time-overcurrent element. This
characteristic emulates the heating effect of
overexcitation on transformer components.

- Phase undervoltage (27S) and phase overvoltage
 (59S) elements that operate on VS channel voltage.
- Inverse-time overvoltage (59I) and inverse-time
 undervoltage (27I) elements that operate on the mea-
sured phase-to-neutral voltages, phase-to-phase volt-
ages, positive-sequence voltage, or VS channel
voltage.

Loss-of-Potential Detection

The SEL-787 with optional voltage inputs contains LOP
detection logic on the three-phase voltage input to the
relay. The LOP logic detects open voltage transformer
fuses or other conditions that cause a loss of relay sec-
ondary voltage input. The SEL-787 with optional voltage
inputs includes LOP logic that detects one, two, or three
potentially open fuses. This patented LOP logic is
unique, because it does not require settings and is univer-
sally applicable. The LOP feature allows for the blocking
of protection elements to add security during voltage
transformer fuse failure.

Synchronism Check/Station DC Battery Monitor

The SEL-787-3S allows you to program the VS/Vbat
voltage channel for use as either a synchronism check or
station dc battery monitor. When programmed as a
synchronism-check channel, single-phase voltage
(phase-to-neutral or phase-to-phase) can be connected to
the voltage input for a synchronism check or hot/dead
line check across the circuit breaker to which the three-
phase voltages are assigned. When the channel is pro-
grammed for the battery monitor, the station dc battery
voltage can be monitored. The relay also allows you to
program over- and undervoltage elements on the voltage
channel.

Over- and Underfrequency Protection

The SEL-787 with optional voltage inputs contains four
frequency elements. Each element operates as either an
over- or underfrequency element with or without time
delay, depending on the element pickup setting.

If the element pickup setting is less than the nominal
system frequency setting, the element operates as an
underfrequency element, picking up if the measured
frequency is less than the set point. If the pickup setting
exceeds the nominal system frequency, the element
operates as an overfrequency element, picking up if the
measured frequency exceeds the set point.

The SEL-787 with optional voltage inputs uses the
positive-sequence voltage to determine system
frequency. All frequency elements are disabled if the
positive-sequence voltage is less than the minimum
voltage threshold.
Directional Power Element Protection

The SEL-787 with optional voltage inputs provides two directional power elements for detecting real (WATTS) or reactive (VARS) directional power flow levels for the transformer winding(s) associated with the three-phase voltage input. Each directional power element has a definite-time delay setting.

RTD Thermal Protection

When the SEL-787 is equipped with either an optional 10 RTD input expansion card or an external SEL-2600 RTD Module with as many as 12 RTD inputs, you can program as many as 12 thermal elements in the relay for two levels of thermal protection per element. Each RTD input provides an alarm and trip thermal pickup setting in degrees Celsius, open and shorted RTD detection, and is compatible with the following three-wire RTD types:

- PT100 (100 Ω platinum)
- NI100 (100 Ω nickel)
- NI120 (120 Ω nickel)
- CU10 (10 Ω copper)

Operator Controls

Operator controls eliminate traditional panel control switches. Eight conveniently sized operator controls, each with two programmable tricolor LEDs, are located on the relay front panel (see Figure 8, Figure 9, and Figure 10). You can set the SER to track operator controls. Use SELOGIC control equations to change operator control functions. Use configurable labels to change all of the text shown in Figure 8, Figure 9, and Figure 10.

The following operator control descriptions are for factory-set logic.

LOCK: The LOCK operator control blocks selected functions. Press it for at least three seconds to engage or disengage the lock function. When the LOCK pushbutton is engaged, the CLOSE operator control is blocked.

BRKRn: Each of the BRKRn (n = 1, 2, 3, or 4) pushbuttons allows you to select the breaker on which a close or trip control operation is to be performed. Only one breaker can be selected at any given time. Breaker select status for a given breaker is indicated by the upper pushbutton LED. The lower pushbutton LED indicates the CLOSED/OPEN (RED/GREEN, respectively) status of the corresponding breaker.

CLOSE and TRIP: Use the CLOSE and TRIP operator controls to close and open the circuit breaker. You can program these controls with intentional time delays to support operational requirements for breaker-mounted relays. This allows you to press the CLOSE or TRIP pushbutton, then move to an alternate location before the breaker command is executed.
AUX: You can program the AUX\(n\) \((n = 1, 2, \text{ or } 3)\) pushbuttons for additional control of your specific application.

In the SEL-787 with the touchscreen display, you can use the front-panel operator control pushbuttons to jump to a specific screen while also using them for LOCK/TRIP/CLOSE operations, etc. You can program the selectable operator pushbutton screen settings under the Touchscreen settings category in QuickSet to map the button to a specific screen.

Built-In Web Server

Every Ethernet-equipped SEL-787 relay includes a built-in web server. Interface with the relay by using any standard web browser to perform the following actions:
- Log in with password protection.
- Safely read the relay settings.
- Verify the relay self-test status and view the relay configuration.
- Inspect meter reports.
- Download event reports.
- Upload new firmware (firmware upgrade).

Figure 11 shows the fundamental metering screen that can be accessed by clicking **Meter > Fundamental**. Use the Meter menu to view all the available relay metering statistics.

Figure 12 shows the Group 1 settings webpage. You can view the settings of each relay settings class by selecting **Settings** and the respective relay settings class.

Figure 13 shows the firmware upgrade webpage.

You can upgrade the relay firmware through the relay web server by clicking **System > File Management** (available at Access Level 2) and selecting the firmware upgrade file. *Figure 13* shows the firmware upgrade webpage.

Relay and Logic Settings Software

QuickSet simplifies settings and provides analytical support for the SEL-787. There are several ways to create and manage relay settings with QuickSet:
- Develop settings offline with an intelligent settings editor that only allows valid settings.
- Create SELOGIC control equations with a drag-and-drop text editor.
- Configure proper settings using online help.
- Organize settings with the relay database manager.
- Load and retrieve settings using a simple PC communications link.

With QuickSet, you can verify settings and analyze power system events with the integrated waveform and harmonic analysis tools.

Use the following features of QuickSet to monitor, commission, and test the SEL-787:
- Use the HMI to monitor meter data, Relay Word bits, and output contact statuses during testing.
- Use the PC interface to remotely retrieve power system data.
➤ Use the Event Report Analysis tool for easy retrieval and visualization of ac waveforms and digital inputs and outputs the relay processes.
➤ Use the graphical current phasor display in the HMI to visualize differential current relationships.
➤ Use bay control to design new bay screens and edit existing bay screens by launching ACSELERATOR Bay Screen Builder SEL-5036 Software for SEL-787 relays with the touchscreen display.

ACSELERATOR Bay Screen Builder SEL-5036 Software

The SEL-787 with the touchscreen display option provides you with the ability to design bay configuration screens to meet your system needs. You can display the bay configuration as a single-line diagram (SLD) on the touchscreen. You can use ANSI and IEC symbols, along with analog and digital labels, for the SLD to indicate the status of the breaker and disconnects, bus voltages, and power flow through the breaker. In addition to SLDs, you can design the screens to show the status of various relay elements via Relay Word bits or to show analog quantities for commissioning or day-to-day operations. You can design these screens with the help of Bay Screen Builder in conjunction with QuickSet. Bay Screen Builder provides an intuitive and powerful interface to design bay screens to meet your application needs.

Figure 14 Bay Screen Builder

Metering and Monitoring

The SEL-787 provides extensive metering capabilities. See Specifications on page 34 for metering and power measurement accuracies. As shown in Table 5, metered quantities include phase voltages and currents; neutral current; sequence voltages and currents; harmonics, power, frequency, and energy; and maximum/minimum logging of selected quantities. The relay reports all metered quantities in primary quantities (current in A primary and voltage in V primary).
Load Profile

The SEL-787 features a programmable Load Data Profile (LDP) recorder that records as many as 17 metering quantities into nonvolatile memory at fixed time intervals. The LDP saves several days to several weeks of the most recent data depending on the LDP settings (9800 entries total).

Synchronized Phasor Measurement

Combine the SEL-787 with an SEL IRIG-B time source to measure the system angle in real time with a timing accuracy of ±10 µs. Measure instantaneous voltage and current phase angles in real time to improve system operation with synchrophasor information. Replace state measurement, study validation, or track system stability. Use SEL-5077 SYNCHROWAVE® Server Software or SEL-5078-2 SYNCHROWAVE® Central Visualization and Analysis Software to view system angles at multiple locations for precise system analysis and system-state measurement (see Figure 15).

Table 5 SEL-787 Metered Values (Model Dependent)

<table>
<thead>
<tr>
<th>Types of Metering</th>
<th>RMS</th>
<th>Synchrophasors</th>
<th>Remote Analogs</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand and Peak Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currents IxWn</td>
<td>Winding phase current magnitude and angle, primary A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x = A, B, C, n = 1, 2, 3, 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Neutral current magnitude and angle, primary A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>Residual-ground fault current and angle per winding, primary A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGWn (n = 1, 2, 3, 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3I2Wn (n = 1, 2, 3, 4)</td>
<td>Negative-sequence current and angle per winding, primary A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOPz (z = 1, 2, 3)</td>
<td>Differential operate current, scaled to TAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRTz (z = 1, 2, 3)</td>
<td>Differential restraint current, scaled to TAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InF2, InF4, InF5 (n = 1, 2, 3, 4)</td>
<td>Current harmonics, InF2/IOPn (%) for 2nd, 4th, 5th harmonics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltages VA, VB, VC</td>
<td>Phase voltages and angles, primary volts, for wye-connected potential transformers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltages VAB, VBC, VCA</td>
<td>Phase-to-phase voltages and angles, primary volts, for delta-connected potential transformers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage VG</td>
<td>Residual-ground voltage and phase angle, primary volts, for wye-connected potential transformers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage 3V2</td>
<td>Negative-sequence voltage and phase angle, primary volts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power kVA, kW, kVAR</td>
<td>Calculated apparent, real, and reactive power scaled to primary values (single and three-phase)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy MWh, MVARh</td>
<td>Three-phase positive and negative megawatt-hours, megavar-hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Factor PF</td>
<td>Single and three-phase power factor (leading or lagging)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage VS</td>
<td>Synchronism-check voltage channel, voltage magnitude and angle, primary volts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage VDC</td>
<td>Station battery voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency FREQ</td>
<td>Measured system frequency (Hz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency FREQS</td>
<td>Measured frequency (Hz) of synchronism-check channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V/Hz</td>
<td>Calculated volts/hertz in percent, using highest measured voltage and frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIX01–AIX04 (x = 3, 4, or 5)</td>
<td>Analog inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV01–MV32</td>
<td>Math variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA001–RA128</td>
<td>Remote analogs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD1–RTD12</td>
<td>RTD temperature measurement (degrees C)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Single-phase power and power factor quantities are not available when delta-connected PTs are used.
Send synchrophasor data using IEEE C37.118-2005 protocol to SEL synchrophasor applications. These include the SEL-3378 Synchrophasor Vector Processor (SVP), SEL-3530 Real-Time Automation Controller (RTAC), and the SEL-5078-2 SYNCHROWAVE® Central Visualization and Analysis Software suite.

The SEL-3373 Station Phasor Data Concentrator (PDC) and the SEL-5073 SYNCHROWAVE PDC software correlate data from multiple SEL-787 relays and concentrate the result into a single output data stream. These products also provide synchrophasor data archiving capability. These SEL-3378 SVP enables control applications based on synchrophasors. Directly measure the oscillation modes of your power system and then act on the result. Use wide-area phase angle slip and acceleration measurements to properly control islanding of distributed generation. With the SVP, you can customize a synchrophasor control application according to the unique requirements of your power system.

The data rate of SEL-787 synchrophasors is selectable with a range of 1–60 messages per second. This flexibility is important for efficient use of communication capacity.

The SEL-787 phasor measurement accuracy meets the highest IEEE C37.118-2005 Level 1 requirement of 1 percent total vector error (TVE). This means you can use any SEL-787 model in an application that otherwise would require purchasing a separate dedicated phasor measurement unit (PMU).

Use the SEL-787 with SEL communications processors, or the SEL-3530 RTAC, to change nonlinear state estimation into linear state estimation. If all necessary lines include synchrophasor measurements then state estimation is no longer necessary. The system state is directly measured.

$$\begin{bmatrix} V_1 \\ V_2 \\ P_{12} \\ Q_{12} \end{bmatrix} = h (V, \theta) + \text{error}$$

$$\begin{bmatrix} \delta_1 \\ \delta_2 \\ V_1 \\ V_2 \end{bmatrix} = h (V, \theta)$$

Figure 16 Synchrophasor Measurements Turn State Estimation into State Measurement

Improve Situational Awareness

Provide improved information to system operators. Advanced synchrophasor-based tools produce a real-time view of system conditions. Use system trends, alarm points, and preprogrammed responses to help operators prevent a cascading system collapse and maximize system stability. Awareness of system trends provides operators with an understanding of future values based on measured data.

➤ Increase system loading while maintaining adequate stability margins.
➤ Improve operator response to system contingencies such as overload conditions, transmission outages, or generator shutdown.
➤ Advance system knowledge with correlated event reporting and real-time system visualization.
➤ Validate planning studies to improve system load balance and station optimization.

Figure 17 Visualization of Phase Angle Measurements Across a Power System
Event Reporting and SER

Event reports and the SER simplify post-fault analysis and improve understanding of simple and complex protective scheme operations. In response to a user-selected trigger, the voltage, current, frequency, and element status information contained in each event report confirms relay, scheme, and system performance for every fault. Decide how much detail is necessary when you request an event report (e.g., 1/4-cycle or 1/32-cycle resolution, filtered or raw analog data, respectively).

The relay stores as many as 5 of the most recent 180-cycle event reports, 18 of the most recent 64-cycle event reports, or 50 of the most recent 15-cycle event reports in nonvolatile memory. The relay always appends relay settings to the bottom of each event report.

The following analog data formats are available:

- 1/4-cycle or 1/32-cycle resolution, filtered or unfiltered analog, ASCII or Compressed ASCII reports
- 1/4-cycle filtered analog, ASCII differential reports
- 1/32-cycle resolution COMTRADE reports

The relay SER feature stores the latest 1,024 entries. Use this feature to gain a broad perspective at a glance. An SER entry helps to monitor input/output change-of-state occurrences and element pickup/dropout.

Synchronized Measurements

The IRIG-B time-code input synchronizes the SEL-787 internal clock time to within ±1 μs of the time-source input. Convenient sources for this time code are an SEL-2401 Satellite-Synchronized Clock, an SEL communications processor, or an SEL RTAC (via Serial Port 3 on the SEL-787). For time accuracy specifications for metering, synchrophasors, and events, see Specifications.

Substation Battery Monitor

The SEL-787 relays that include the enhanced voltage option with the monitoring package measure and report the substation battery voltage connected to the VBAT terminals. The relay includes two programmable threshold comparators and associated logic for alarm and control. For example, if the battery charger fails, the measured dc falls below a programmable threshold. The SEL-787 alarms to alert operations personnel before the substation battery voltage falls to unacceptable levels. Monitor these thresholds with an SEL communications processor and trigger messages, telephone calls, or other actions.

The measured dc voltage appears in the meter display and the Vdc column of the event report. Use the event report column data to see an oscillographic display of the battery voltage. This display shows how much the substation battery voltage drops during trip, close, and other control operations.

Circuit Breaker Contact Wear Monitor

Circuit breakers experience mechanical and electrical wear every time they operate. Intelligent scheduling of breaker maintenance takes into account the manufacturer’s published data of contact wear versus interruption levels and operation count. With the breaker manufacturer’s maintenance curve as input data, the SEL-787 breaker monitor feature compares these input data to the measured (unfiltered) ac current at the time of a trip and the number of close-to-open operations.

Every time the breaker trips, the relay integrates the measured current information. When the result of this integration exceeds the breaker wear curve threshold (see Figure 19), the relay alarms via output contact, communications port, or front-panel display. This kind of information allows timely and economical scheduling of breaker maintenance.

Through-Fault Monitoring

A through fault is an overcurrent event external to the differential protection zone. While a through fault is not
an in-zone event, the currents required to feed this external fault can cause great stress on the apparatus inside the differential protection zone. Through-fault currents can cause transformer winding displacement, leading to mechanical damage and increased transformer thermal wear. An SEL-787 through-fault event monitor gathers current level, duration, and date/time for each through fault. The monitor also calculates a simple I^2t and cumulatively stores these data per phase. Use through-fault event data to schedule proactive transformer bank maintenance and to help justify through-fault mitigation efforts. Apply the accumulated alarm capability of the relay to indicate excess through-fault current (I^2t) over time.

IEC 61850 Test Mode

Test mode allows you to test an in-service relay without operating control output contacts. Test mode includes five different modes.

Touchscreen Display

You can order the SEL-787 Transformer Protection Relay with an optional touchscreen display (5-inch, color, 800 x 480 pixels). The touchscreen display makes relay data metering, monitoring, and control quick and efficient. The touchscreen display option in the SEL-787 features a straightforward application-driven control structure and includes intuitive and graphical screen designs.

The touchscreen display allows you to:

- View and control bay screens
- Access metering and monitoring data
- Inspect targets
- View event history, summary data, and SER information
- View relay status and configuration
- Control relay operations
- View and edit settings
- Enable the rotating display
- Program control pushbuttons to jump to a specific screen

You can navigate the touchscreen by tapping the folders and applications. The folders and applications of the Home screen are shown in Figure 20. Folders and applications are labeled according to functionality. Additional folder and application screens for the SEL-787 touchscreen display option can be seen in Figure 21 through Figure 30.

On: In On mode, the relay operates as normal; it reports IEC 61850 Mode/Behavior status as On and processes all inputs and outputs as normal. If the quality of the subscribed GOOSE messages satisfies the GOOSE processing, the relay processes the received GOOSE messages as valid.

Blocked: This mode is similar to On mode, except that the device does not trip any physical contact output.

Test: In Test mode, the relay processes valid incoming test signals and normal messages and operates physical contact outputs, if the outputs are triggered.

Test/Blocked: This is similar to Test mode, except that the device does not trip any physical contact outputs.

Off: The device does not process any incoming data or control commands (except commands to change the mode). All protection logic is disabled and all data quality is marked as invalid.

Bay Screens Application

The SEL-787 with the touchscreen display option provides you with the ability to design bay configuration screens to meet your system needs. The bay configuration can be displayed as an SLD on the touchscreen. You can create as many as 5 bay screens with as many as 4 controllable breakers, 16 controllable 2-position...
disconnects, and 2 controllable 3-position disconnects. ANSI and IEC symbols, along with analog and digital labels, are available for you to create detailed SLDs of the bay to indicate the status of the breaker and disconnects, bus voltages, and power flow through the breaker. Figure 21 shows the default SLD for the touchscreen display option.

Meter Folder Applications

The applications in the Meter folder are part-number dependent. Only those metering applications specific to your part number appear in the Meter folder. Tapping an application in the Meter folder shows you the report for that particular application. Tap the **Phasor** application to view the current and voltage phasors (see Figure 22).

Figure 22 Meter Phasors

Tap the **Energy** application to view the energy metering quantities (see Figure 23). A reset feature is provided for the Energy, Max/Min, Demand, and Peak Demand applications. Tap the **Reset** button (see Figure 23) to navigate to the reset confirmation screen. Once you confirm the reset, the data are reset to zero.

Reports Folder Applications

Tapping the **Reports** folder navigates you to the screen where you can access the Events and SER applications. Use these applications to view events and SERs. To view the event summary (see Figure 25) of a particular event record, tap the event record on the Event History screen. You can also trigger an event from the Event History screen.

Figure 21 Default Bay Screen

Figure 23 Meter Energy

Tap the **Differential** application to view the operate and restraint currents for each differential element (87) of your transformer in multiples of TAP. Use these quantities in conjunction with the phasors or fundamental metering screen to visualize the differential protection of your transformer and for commissioning exercises.

Figure 24 Meter Differential

Figure 25 Event Summary
Tap the **Sequential Events Recorder** application to view a history of the SER reports (see **Figure 26**).

Sequential Events Recorder

<table>
<thead>
<tr>
<th>#</th>
<th>DATE</th>
<th>TIME</th>
<th>ELEMENT</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23/03/2018</td>
<td>18:31:27</td>
<td>RB01</td>
<td>Asserted</td>
</tr>
<tr>
<td>2</td>
<td>23/03/2018</td>
<td>18:31:27</td>
<td>TR4</td>
<td>Asserted</td>
</tr>
<tr>
<td>3</td>
<td>23/03/2018</td>
<td>18:30:56</td>
<td>50P23T</td>
<td>Asserted</td>
</tr>
<tr>
<td>4</td>
<td>23/03/2018</td>
<td>18:30:56</td>
<td>SALARM</td>
<td>Deasserted</td>
</tr>
<tr>
<td>5</td>
<td>23/03/2018</td>
<td>18:30:56</td>
<td>50P31BT</td>
<td>Asserted</td>
</tr>
<tr>
<td>6</td>
<td>23/03/2018</td>
<td>18:30:55</td>
<td>50P22T</td>
<td>Asserted</td>
</tr>
<tr>
<td>7</td>
<td>23/03/2018</td>
<td>18:30:55</td>
<td>50P31CT</td>
<td>Asserted</td>
</tr>
<tr>
<td>8</td>
<td>23/03/2018</td>
<td>18:30:55</td>
<td>50P22T</td>
<td>Asserted</td>
</tr>
</tbody>
</table>

Figure 26 Sequential Events Recorder

Tapping the **Trash** button, shown in **Figure 26**, on the Event History and Sequential Events Recorder screens and confirming the delete action removes the records from the relay.

Control Folder Applications

Tapping the **Control** folder navigates you to the screen where you can access the Breaker Control, Output Pulsing, and Local Bits applications. Use the applications to perform breaker control operations, pulse output contacts (**Figure 27**), and control the local bits (**Figure 28**).

Figure 27 Digital Output Pulsing-Slot A

Figure 28 Local Bits

Device Info Folder Applications

Tapping the **Device Info** folder navigates you to the screen where you can access specific device information applications (Status, Configuration, and Trip & Diag. Messages) and the Reboot application. Tap the **Status** application to view the relay status, firmware version, part number, etc. (see **Figure 29**).

Figure 29 Device Status

To view the trip and diagnostic messages, tap the **Trip & Diag. Messages** application (see **Figure 30**). When a diagnostic failure, trip, or warning occurs, the relay displays the diagnostic message on the screen until it is either overridden by the restart of the rotating display or the inactivity timer expires.

Figure 30 Trip and Diagnostics
Automation

Flexible Control Logic and Integration Features

The SEL-787 can be ordered with as many as four independently operated serial ports:

- EIA-232 port on the front panel
- EIA-232 or EIA-485 port on the Slot B card in the rear
- EIA-232 fiber-optic port on the Slot B card in the rear
- EIA-232 or EIA-485 port on the optional communications card in Slot C in the rear

Optionally, the relay supports single or dual, copper or fiber-optic Ethernet ports. The relay does not require special communications software. You can use any system that emulates a standard terminal system for engineering access to the relay. Establish local or remote communication by connecting computers, modems, protocol converters, printers, an SEL RTAC, SEL communications processor, SEL computing platform, SCADA serial port, or RTUs. Refer to Table 6 for a list of communications protocols available in the SEL-787.

Table 6 Communications Protocols

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple ASCII</td>
<td>Plain language commands for human and simple machine communications. Use for metering, setting, self-test status, event reporting, and other functions.</td>
</tr>
<tr>
<td>Compressed ASCII</td>
<td>Comma-delimited ASCII data reports. Allows external devices to obtain relay data in an appropriate format for direct import into spreadsheets and database programs. Data are checksum protected.</td>
</tr>
<tr>
<td>Extended Fast Meter and Fast Operate</td>
<td>Binary protocol for machine-to-machine communications. Quickly updates SEL communications processors, RTUs, and other substation devices with metering information, relay element, I/O status, time-tags, open and close commands, and summary event reports. Data are checksum protected. Binary and ASCII protocols operate simultaneously over the same communications lines, so control operator metering information is not lost while a technician is transferring an event report.</td>
</tr>
<tr>
<td>Fast SER Protocol</td>
<td>Provides SER events to an automated data collection system.</td>
</tr>
<tr>
<td>Fast Message Protocol</td>
<td>Use this protocol to write remote analog data from other SEL relays or communications processors via unsolicited writes.</td>
</tr>
<tr>
<td>DNP3</td>
<td>Serial or Ethernet-based DNP3 protocols. Provides default and mappable DNP3 objects that include access to metering data, protection elements, Relay Word bits, contact I/O, targets, SER, relay summary event reports, and setting group selection.</td>
</tr>
<tr>
<td>Modbus</td>
<td>Serial- or Ethernet-based Modbus protocol with point remapping. Includes access to metering data, protection elements, contact I/O, targets, SER, relay summary event reports, and setting groups.</td>
</tr>
<tr>
<td>Synchrophasors</td>
<td>IEEE C37.118-2005-compliant synchrophasors for system state, response, and control capabilities.</td>
</tr>
<tr>
<td>Event Messenger</td>
<td>The use of SEL-3010 Event Messenger allows you to receive alerts directly on your cell phone. Alerts can be triggered through relay events and can include quantities measured by the relay.</td>
</tr>
<tr>
<td>DeviceNet</td>
<td>Allows for connection to a DeviceNet network for access to metering data, protection elements, contact I/O, targets, and setting groups.</td>
</tr>
<tr>
<td>SNTP</td>
<td>Ethernet-based protocol that provides time synchronization of the relay.</td>
</tr>
<tr>
<td>IEEE 1588-2008 firmware-based PTP</td>
<td>Ethernet-based protocol that provides time synchronization of the relay.</td>
</tr>
<tr>
<td>PRP</td>
<td>Provides seamless recovery from any single Ethernet network failure in a dual redundant Ethernet network, in accordance with IEC 62439-3.</td>
</tr>
<tr>
<td>IEC 60870-5-103</td>
<td>Serial communications protocol—international standard for interoperability between intelligent devices in a substation.</td>
</tr>
<tr>
<td>EtherNet/IP</td>
<td>Ethernet-based protocol that provides access to metering data, protection elements, targets, and contact I/O.</td>
</tr>
</tbody>
</table>
Apply an SEL communications processor as the hub of a star network with a point-to-point fiber or copper connection between the hub and the SEL-787 (see Figure 31).

The communications processor supports external communications links, including the public switched telephone network, for engineering access to dial-out alerts and private line connections of the SCADA system.

![Figure 31 Example Communications System](image)

SEL manufactures a variety of standard cables for connecting this and other relays to a variety of external devices. Consult your SEL representative for more information on cable availability.

SEL-787 control logic improves integration in the following ways:

- **Replaces traditional panel control switches.** Eliminate traditional panel control switches with 32 local bits. Set, clear, or pulse local bits with the front-panel pushbuttons and display. Program the local bits into your control scheme with SELOGIC control equations. Use the local bits to perform functions such as a trip test or a breaker trip/close.

- **Eliminates RTU-to-relay wiring with 32 remote bits.** Set, clear, or pulse remote bits using serial port commands. Program the remote bits into your control scheme with SELOGIC control equations. Use remote bits for SCADA-type control operations such as trip, close, and settings group selection.

- **Replaces traditional latching relays.** Replace as many as 32 traditional latching relays for such functions as remote control enable with latch bits. Program latch set and latch reset conditions with SELOGIC control equations. Set or reset the nonvolatile latch bits using optoisolated inputs, remote bits, local bits, or any programmable logic condition. The latch bits retain their state when the relay loses power.

- **Replaces traditional indicating panel lights.** Replace traditional indicating panel lights with 32 programmable displays. Define custom messages (e.g., Breaker Open, Breaker Closed) to report power system or relay conditions on the front-panel display. Use advanced SELOGIC control equations to control which messages the relay displays.

- **Eliminates external timers.** Eliminate external timers for custom protection or control schemes with 32 general purpose SELOGIC control equation timers. Each timer has independent time-delay pickup and dropout settings. Program each timer input with the element you want (e.g., time qualify a current element). Assign the timer output to trip logic, transfer trip communications, or other control scheme logic.

- **Eliminates settings changes.** Selectable setting groups make the SEL-787 ideal for applications requiring frequent setting changes and for adapting the protection to changing system conditions. The relay stores four setting groups. Select the active setting group by optoisolated input, command, or other programmable conditions. Use these setting groups to cover a wide range of protection and control contingencies. Switching setting groups switches logic and relay element settings. Program groups for different operating conditions, such as rental/spare transformer applications, station maintenance, seasonal operations, emergency contingencies, loading, source changes, and downstream relay setting changes.

Fast SER Protocol

SEL Fast SER protocol provides SER events to an automated data collection system. SEL Fast SER protocol is available on any rear serial port. Devices with embedded processing capability can use these messages to enable and accept unsolicited binary SER messages from SEL-787 relays. SEL relays and communications processors have two separate data streams that share the same serial port. The normal serial interface consists of ASCII character commands and reports that are intelligible to people using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information, and then allow the ASCII data stream to continue. This mechanism allows a single communications channel to be used for ASCII communications (e.g., transmission of a long event report) interleaved with short bursts of binary data to support fast acquisition of metering or SER data.

Fast Message Protocol

SEL Fast Message Protocol is a method to input or modify remote analogs in the SEL-787. These remote analogs can then be used in SEL Math or SELOGIC control equations. Remote analogs can also be modified via Modbus, DNP3, and IEC 61850.
Ethernet Network Architectures

Figure 32 Simple Ethernet Network Configuration

Figure 33 Ethernet Network Configuration With Dual Redundant Connections (Failover Mode)

Figure 34 Ethernet Network Configuration With Ring Structure (Switched Mode)

Cat 5 shielded twisted pair (STP) cables with RJ45 connectors (SEL-C627/C628) for copper Ethernet ports
OR Fiber-optic Ethernet cables with LC connectors (SEL-C808) for fiber-optic Ethernet ports

Set Port 1 (Ethernet) settings in each relay.
Additional Features

MIRRORED BITS Relay-to-Relay Communications

The SEL-patented MIRRORED BITS communications technology provides bidirectional relay-to-relay digital communication. MIRRORED BITS communications can operate independently on as many as two EIA-232 rear serial ports and one fiber-optic rear serial port on a single SEL-787.

This bidirectional digital communication creates eight additional virtual outputs (transmitted MIRRORED BITS) and eight additional virtual inputs (received MIRRORED BITS) for each serial port operating in the MIRRORED BITS mode (see Figure 35). Use these MIRRORED BITS to transmit/receive information between upstream relays and a downstream relay to enhance coordination and achieve faster tripping for downstream faults. MIRRORED BITS technology also helps reduce total scheme operating time by eliminating the need to assert output contacts to transmit information.

Event Messenger Points

The SEL-787, when used with the SEL-3010, allows for ASCII-to-voice translation of as many as 32 user-defined messages, along with analog data that has been measured or calculated by the relay. This combination allows you to receive voice message alerts (on any phone) regarding Relay Word bit transitions in the relay.

Verbal notification of breaker openings, fuse failures, RTD alarms, etc., can be sent directly to your cell phone through the use of your SEL-787 and an SEL-3010 (must be connected to an analog telephone line). In addition, messages can include an analog value such as current, voltage, or power measurements made by the SEL-787.

Configurable Labels

Use the configurable labels to relabel the operator controls and LEDs (shown in Figure 38) to suit your installation requirements. This feature includes preprinted labels (with factory-default text), blank label media, and a Microsoft Word template on CD-ROM. This allows quick, professional-looking labels for the SEL-787. Labels may also be customized without the use of a PC by writing the new label on the blank stock provided. The ability to customize the control and indication features allows specific utility or industry procedures to be implemented without the need for adhesive labels.

Web Server

The web server allows you to communicate with the relay via the Ethernet port without the need for additional communication software (web browser required). The web server allows you to access metering and monitoring data and to perform firmware upgrades.

Firmware Download Via Ethernet Ports

Relay firmware can be securely downloaded to your relay via the Ethernet port. The firmware is digitally signed to prevent malicious modification. Additionally, the Ethernet firmware download allows you to access and update all your network relays simultaneously.
Figure 36 SEL-787 Dimensions for Rack- and Panel-Mount Models
Hardware Overview

SEL-787-3E Wiring Diagram

- **Power Supply**
 - 110-240 Vac
 - 24-48 Vdc
 - 110-250 Vdc

- **SEL-2812 compatible ST Fiber-Optic Serial Port (Optional)**

- **SEL 787-3E Transformer Protection Relay**

- **Input Power**

- **Output Contacts**

- **Control Inputs**

- **Output Contacts (Optional)**

- **Front Panel**
 - IRIG-B Time Source

- **1-12 RTDs**

- **SEL 2600 Series External RTD Module With ST Option (Optional)**

- **IRIG-B Time Source**

- **≤ 1000 m FO Cable**

- **240-1506 — 1 m (3.3 ft) ST/ST**

- **240-1507 — 5 m (16.4 ft) ST/ST**

- **240-1508 — 15 m (49.2 ft) ST/ST**

- **Other lengths available by request**

- **SEL Fiber-Optic Cables**

- **SEL-2600 Series External RTD Module With ST Option (Optional)**

- **Optional Ethernet (single or dual)**

- **Optional Input/Output Cards**

- **10 RTDs**

- **4 Digital Inputs / 4 Digital Outputs**

- **8 Digital Outputs**

- **3 Digital Inputs / 4 Digital Outputs / 1 Analog Output**

- **4 Analog Inputs / 4 Analog Outputs**

- **4 Digital Inputs / 3 Digital Outputs**

- **8 Digital Inputs**

- **Phase and Neutral Currents and Voltage Inputs**

- **Current Inputs**

- **SEL-2600 Series External RTD Module With ST Option (Optional)**

- **SEL Fiber-Optic Cables**

- **Other lengths available by request**

- **SEL 2812 compatible ST Fiber-Optic Serial Port (Optional)**

- **SEL-2600 Series External RTD Module With ST Option (Optional)**

- **SEL Fiber-Optic Cables**

- **Other lengths available by request**

- **SEL 2812 compatible ST Fiber-Optic Serial Port (Optional)**

- **SEL Fiber-Optic Cables**

- **Other lengths available by request**

- **SEL 2812 compatible ST Fiber-Optic Serial Port (Optional)**

- **SEL Fiber-Optic Cables**

- **Other lengths available by request**

- **SEL 2812 compatible ST Fiber-Optic Serial Port (Optional)**

- **SEL Fiber-Optic Cables**

- **Other lengths available by request**
Relay Panel Diagrams

SEL-787-4X Front Panel

Figure 38 Front Panel With Default Configurable Labels

SEL-787-4X Rear and Side Panels

Figure 39 SEL-787-4X With Single Copper Ethernet, 8 DI, and RTD Option
SEL-787-3E/S Front Panel

Figure 40 Front Panel With Default Configurable Labels

SEL-787-3E Rear and Side Panels

Figure 41 SEL-787-3E With Dual-Fiber Ethernet, EIA-232 Communication, 3 DI/4 DO/1 AO Option
SEL-787-3S Rear and Side Panels

Figure 42 SEL-787-3S With DeviceNet and Hybrid 4 DI/4 DO Option

SEL-787-2E Front Panel

Figure 43 Front Panel With Default Configurable Labels
Applications

The SEL-787 is designed to provide differential and overcurrent protection for power transformers, generator step-up transformers, and autotransformers with as many as four windings/terminals. In addition, the SEL-787 contains advanced integration and control features that will allow its application in a wide variety of automation and control schemes. Refer to Section 2: Installation and Section 4: Protection and Logic Functions of the instruction manual for more details.

Figure 45 shows the application of an SEL-787-4X Relay for protection of a three-winding transformer. You can configure Windings 1, 2, and 4 on the relay for differential protection, and you can apply the 50/51 elements associated with each winding towards overcurrent protection. You can configure A-phase and B-phase of Winding 3 on the relay for REF protection. You can use the three-phase voltage inputs for V/Hz, over- and undervoltage, over- and underfrequency, and directional power protection. Apply the transformer through-fault monitoring of the SEL-787 to keep track of accumulated through-fault I^2t values. Monitor the number of through faults, accumulated I^2t, and fault duration times to determine the frequency (through-fault events per day, week, month, or year) and impact of external faults on the transformer.
Figure 45 SEL-787-4X Provides 3-Winding Transformer Differential Protection, REF Protection, Overcurrent Protection, and Fan Bank Control With LTC Monitoring

Note: The CT secondary circuit should be grounded in the relay cabinet.
Figure 46 SEL-787-3E Provides Auto-Transformer Differential Protection, REF Protection, Overcurrent Protection, and Voltage-Based Protection

Note: The CT secondary circuit should be grounded in the relay cabinet.
Figure 47 Typical DC Control Connection Diagram for the Three Terminal Applications

Note 1: Assumes an optional 8 DO card in Slot C for OUT301–OUT308 and 4 DI/4 DO in Slot D for IN401–IN404 and OUT401–OUT404.
Note 2: Remaining inputs IN101, IN102, IN404 and outputs OUT102, OUT304, and OUT308 are spare.

Settings required for the above implementation:

OUT101 := HALARM OUT102 := Y OUT103 := TRIP2
OUT103FS := N OUT301 := TRIP3
OUT102 := 0 OUT302 := CLOSE1
OUT103 := TRIPXFMR OUT303 := CLOSE2
OUT301 := TRIP1 OUT304 := CLOSE3
Specifications

Compliance

Designed and manufactured under an ISO 9001 certified quality management system

49 CFR 15B, Class A

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

UL Listed to U.S. and Canadian safety standards (File E212775, NRGU, NRGU7)

CE Mark

RCM Mark

Hazardous Locations

UL Certified Hazardous Locations to U.S. and Canadian standards CL 1, DIV 2; GP A, B, C, D; T3C, maximum surrounding air temperature of 50°C (File E470448)

EU

Ambient air temperature shall not exceed –20°C ≤ Ta ≤ +50°C.

Note: Where marked, ATEX and UL Hazardous Locations Certification tests are applicable to rated supply specifications only and do not apply to the absolute operating ranges, continuous thermal, or short circuit duration specifications.

General

AC Current Input

I_{NOM} = 1 A or 5 A secondary depending on the model

Measurement Category: II

Phase and Neutral Currents

I_{NOM} = 5 A

Continuous Rating: 3 • I_{NOM} @ 85°C

A/D Measurement Limit: 217 A peak (154 A rms symmetrical)

Saturation Current Rating: Linear to 96 A symmetrical

1-Second Thermal: 500 A

Burden (per phase): <0.1 VA @ 5 A

I_{NOM} = 1 A

Continuous Rating: 3 • I_{NOM} @ 85°C

A/D Measurement Limit: 43 A peak (31 A rms symmetrical)

Saturation Current Rating: Linear to 19.2 A symmetrical

1-Second Thermal: 100 A

Burden (per phase): <0.01 VA @ 1 A

AC Voltage Inputs

V_{NOM} (kV L-L)/PT Ratio Range:

100–250 V (if DELTA_Y := DELTA)

100–440 V (if DELTA_Y := WYE)

Rated Continuous Voltage: 300 Vac

10-Second Thermal: 600 Vac

Burden: <0.1 VA

Input Impedance: 4 MΩ differential (phase-to-phase)

7 MΩ common mode (phase-to-chassis)

Power Supply

Relay Start-Up Time: Approximately 5–10 seconds (after power is applied until the ENABLED LED turns on)

High-Voltage Supply

Rated Supply Voltage: 110–240 Vac, 50/60 Hz

Input Voltage Range (Design Range): 85–264 Vac

Power Consumption: ≤50 VA (ac)

<25 W (dc)

Interruptions: 50 ms @ 125 Vac/Vdc

100 ms @ 250 Vac/Vdc

Low-Voltage Supply

Rated Supply Voltage: 24–48 Vdc

Input Voltage Range (Design Range): 19.2–60.0 Vdc

Power Consumption: ≤25 W (dc)

Interruptions: 10 ms @ 24 Vdc

50 ms @ 48 Vdc

Fuse Ratings

LV Power Supply Fuse

Rating: 3.15 A

Maximum Rated Voltage: 300 Vdc, 250 Vac

Breaking Capacity: 1500 A at 250 Vac

Type: Time-lag T

HV Power Supply Fuse

Rating: 3.15 A

Maximum Rated Voltage: 300 Vdc, 250 Vac

Breaking Capacity: 1500 A at 250 Vac

Type: Time-lag T

Output Contacts

General

The relay supports Form A, B, and C outputs.

Dielectric Test Voltage: 2500 Vac

Impulse Withstand Voltage (U_{IMP}): 5000 V

Mechanical Durability: 100,000 no-load operations

Standard Contacts

Pickup/Dropout Time: ≤8 ms (coil energization to contact closure)

DC Output Ratings

Rated Operational Voltage: 250 Vdc

Rated Voltage Range: 19.2–275 Vdc

Rated Insulation Voltage: 300 Vdc

Make: 30 A @ 250 Vdc per IEEE C37.90

Continuous Carry: 6 A @ 70°C

4 A @ 85°C

1-Second Thermal: 50 A

Contact Protection: 360 Vdc, 115 J MOV protection across open contacts
Breaking Capacity (10,000 Operations) per IEC 60255-0-20:1974:
- 24 Vdc 0.75 A L/R = 40 ms
- 48 Vdc 0.50 A L/R = 40 ms
- 125 Vdc 0.30 A L/R = 40 ms
- 250 Vdc 0.20 A L/R = 40 ms

Cyclic (2.5 Cycles/Second) per IEC 60255-0-20:1974:
- 24 Vdc 0.75 A L/R = 40 ms
- 48 Vdc 0.50 A L/R = 40 ms
- 125 Vdc 0.30 A L/R = 40 ms
- 250 Vdc 0.20 A L/R = 40 ms

AC Output Ratings
- Maximum Operational Voltage (Ue) Rating: 240 Vac
- Insulation Voltage (Ui) Rating (excluding EN 61010-1): 300 Vac
- 1-Second Thermal: 50 A

Utilization Category: AC-15

<table>
<thead>
<tr>
<th>B300 (5 A Thermal Current, 300 Vac Max)</th>
<th>Maximum Current</th>
<th>Max VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage 120 Vac</td>
<td>240 Vac</td>
<td>—</td>
</tr>
<tr>
<td>Make 30 A</td>
<td>15 A</td>
<td>3600</td>
</tr>
<tr>
<td>Break 3 A</td>
<td>1.5 A</td>
<td>360</td>
</tr>
<tr>
<td>PF <0.35, 50–60 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage Protection Across 270 Vac, 115 J

Optoisolated Control Inputs
- When Used With DC Control Signals
 - Pickup/Dropout Time: Depends on the input debounce settings
 - 250 V: ON for 200–312.5 Vdc
 - OFF below 150 Vdc
 - 220 V: ON for 176–275 Vdc
 - OFF below 132 Vdc
 - 125 V: ON for 100–156.2 Vdc
 - OFF below 75 Vdc
 - 110 V: ON for 88–137.5 Vdc
 - OFF below 66 Vdc
 - 48 V: ON for 38.4–60 Vdc
 - OFF below 28.8 Vdc
 - 24 V: ON for 15–30 Vdc
 - OFF for below 5 Vdc

- When Used With AC Control Signals
 - Pickup Time: 2 ms
 - Dropout Time: 16 ms
 - 250 V: ON for 170.6–312.5 Vac
 - OFF below 106 Vac
 - 220 V: ON for 150.2–275 Vac
 - OFF below 93.3 Vac
 - 125 V: ON for 85–156.2 Vac
 - OFF below 53 Vac
 - 110 V: ON for 75.1–137.5 Vac
 - OFF below 46.6 Vac
 - 48 V: ON for 32.8–60 Vac
 - OFF below 20.3 Vac
 - 24 V: ON for 14–30 Vac
 - OFF below 5 Vac

Analog Outputs
- 1A0: 4–20 mA ±20 mA
- 4A0: ±10 V
- Current: 4–20 mA ±20 mA
- Voltage: — ±10 V
- Load at 1 mA: — 0–15 kΩ
- Load at 20 mA: 0–300 Ω 0–750 Ω
- Load at 10 V: — >2000 Ω
- Refresh Rate: 100 ms 100 ms
- % Error, Full Scale, at <±1% <±0.55%
- Select From: Analog quantities available in the relay

Analog Inputs
- Maximum Input Range: ±20 mA ±10 V
- Operational range set by user
- Input Impedance: 200 Ω (current mode)
- >10 kΩ (voltage mode)
- Accuracy at 25°C:
 - With user calibration: 0.05% of full scale (current mode)
 - 0.025% of full scale (voltage mode)
 - Without user calibration: Better than 0.5% of full scale at 25°C
- Accuracy Variation With Temperature: ±0.015% per °C of full-scale

Electromagnetic loads >72 VA, PF <0.3, 50–60 Hz

B300 (5 A Thermal Current, 300 Vac Max)

<table>
<thead>
<tr>
<th>B300 (5 A Thermal Current, 300 Vac Max)</th>
<th>Maximum Current</th>
<th>Max VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage 120 Vac</td>
<td>240 Vac</td>
<td>—</td>
</tr>
<tr>
<td>Make 30 A</td>
<td>15 A</td>
<td>3600</td>
</tr>
<tr>
<td>Break 3 A</td>
<td>1.5 A</td>
<td>360</td>
</tr>
<tr>
<td>PF <0.35, 50–60 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utilization Category: AC-15

<table>
<thead>
<tr>
<th>AC-15</th>
<th>Operational Voltage (Ue)</th>
<th>120 Vac</th>
<th>240 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-15</td>
<td>Operational Current (Ie)</td>
<td>3 A</td>
<td>1.5 A</td>
</tr>
<tr>
<td>AC-15</td>
<td>Make Current</td>
<td>30 A</td>
<td>15 A</td>
</tr>
<tr>
<td>AC-15</td>
<td>Break Current</td>
<td>3 A</td>
<td>1.5 A</td>
</tr>
<tr>
<td>AC-15</td>
<td>Electromagnetic loads</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage Protection Across 270 Vac, 115 J

Open Contacts:

Fast Hybrid (High-Speed, High-Current Interrupting)
Frequency and Phase Rotation
System Frequency: 50, 60 Hz
Phase Rotation: ABC, ACB
Frequency Tracking: 15–70 Hz (requires ac voltage inputs)

Time-Code Input
Format: Demodulated IRIG-B
On (1) State: $V_{ih} \geq 2.2 \text{ V}$
Off (0) State: $V_{il} \leq 0.8 \text{ V}$
Input Impedance: 2 kΩ
Synchronization Accuracy
Internal Clock: ±1 µs
Synchrophasor Reports (e.g., MET PM): ±10 µs
All Other Reports: ±5 ms
SNTP Accuracy: ±2 ms
PTP Accuracy: ±1 ms
Unsynchronized Clock Drift Relay Powered: 2 minutes per year, typically

Communications Ports
Standard EIA-232 (2 Ports)
Location: Front Panel
Data Speed: 300–38400 bps
EIA-485 Port (Optional)
Location: Rear Panel
Data Speed: 300–19200 bps
Ethernet Port (Optional)
Single/Dual 10/100BASE-T copper (RJ45 connector)
Data Speed: 300–38400 bps
Standard Multimode Fiber-Optic Port
Location: Front Panel
Data Speed: 300–38400 bps

Fiber-Optic Ports Characteristics
PORT 1 (or 1A, 1B) Ethernet
Wavelength: 1300 nm
Optical Connector Type: LC
Fiber Type: Multimode
Link Budget: 16.1 dB
Typical TX Power: –15.7 dBm
RX Min. Sensitivity: –31.8 dBm
Fiber Size: 62.5/125 µm
Approximate Range: ~6.4 km
Data Rate: 100 Mbps
Typical Fiber Attenuation: ~2 dB/km
PORT 2 Serial (SEL-2812 Compatible)
Wavelength: 820 nm
Optical Connector Type: ST
Fiber Type: Multimode
Link Budget: 8 dB
Typical TX Power: –16 dBm
RX Min. Sensitivity: –24 dBm
Fiber Size: 62.5/125 µm
Approximate Range: ~1 km
Data Rate: 5 Mbps
Typical Fiber Attenuation: ~4 dB/km

Optional Communications Cards
Option 1: EIA-232 or EIA-485 communications card
Option 2: DeviceNet communications card

Communications Protocols
SEL, Modbus RTU and TCP/IP, DNP3 serial and LAN/WAN, FTP, Telnet, SNTP, IEEE 1588-2008 firmware-based PTP, IEC 61850 Edition 2, IEC 60870-5-103, EtherNet/IP, PRP, MIRRORED BITS Communications, EVMSG, IEEE C37.118 (synchrophasors), and DeviceNet

Operating Temperature
IEC Performance Rating: –40°C to +85°C (~–40°F to +185°F) (per IEC/EN 60068-2-1 and 60068-2-2)
Note: Not applicable to UL applications.
Note: The front-panel display is impaired for temperatures below ~–20°C and above +70°C.
DeviceNet Communications Card Rating: +60°C (140°F) maximum
Optoisolated Control Inputs: As many as 26 inputs are allowed in ambient temperatures of 85°C or less. As many as 34 inputs are allowed in ambient temperatures of 75°C or less. As many as 44 inputs are allowed in ambient temperatures of 65°C or less.

Operating Environment
Insulation Class: I
Pollution Degree: 2
Overvoltage Category: II
Atmospheric Pressure: 80–110 kPa
Relative Humidity: 5%–95%, noncondensing
Maximum Altitude Without Derating (Consult the Factory for Higher Altitude Rating): 2000 m

Dimensions
144.0 mm (5.67 in) x 192.0 mm (7.56 in) x 147.4 mm (5.80 in)
Weight
2.7 kg (6.0 lb)

Relay Mounting Screws (#8-32) Tightening Torque
Minimum: 1.4 Nm (12 in-lb)
Maximum: 1.7 Nm (15 in-lb)

Terminal Connections
Terminal Block
Screw Size: #6
Ring Terminal Width: 0.310 in maximum

Compressor Plug Tightening Torque
Minimum: 0.5 Nm (4.4 in-lb)
Maximum: 1.0 Nm (8.8 in-lb)

Compression Plug Mounting Ear Screw Tightening Torque
Minimum: 0.18 Nm (1.6 in-lb)
Maximum: 0.25 Nm (2.2 in-lb)

Product Standards
Electromagnetic Compatibility: IEC 60255-26:2013
IEEE 60255-27:2013
UL 508
CSA C22.2 No. 14-05
Type Tests

Environmental Tests

IP65 enclosed in panel
(2-line display models)
IP54 enclosed in panel
(touchscreen models)
IP60-rated terminal dust protection
assembly (SEL Part #915900170).
The 10°C temperature derating applies to the temperature specifications of the relay.

IP20 for terminals and the relay rear panel

IEC 60255-27:2013, Section 10.6.2.1
Endurance: Class 2
Response: Class 2

IEC 60255-27:2013, Section 10.6.2.2
IEC 60255-27:2013, Section 10.6.2.3
Withstand: Class 1
Response: Class 2
Bump: Class 1

Seismic (Quake Response): IEC 60255-21-3:1993
IEC 60255-27:2013, Section 10.6.2.4
Response: Class 2

Cold: IEC 60068-2-1:2007
IEC 60255-27:2013, Section 10.6.1.2
IEC 60255-27:2013, Section 10.6.1.4
–40°C, 16 hours

IEC 60255-27:2013, Section 10.6.1.1
IEC 60255-27:2013, Section 10.6.1.3
85°C, 16 hours

IEC 60255-27:2013, Section 10.6.1.5
Severity Level: 93% relative humidity minimum
40°C, 10 days

IEC 60255-27:2013, Section 10.6.1.6
Test D4; Variant 2: 25°–55°C,
6 cycles, 95% relative humidity minimum

Change of Temperature: IEC 60068-2-14:2009
IEC 60255-1:2010, Section 6.12.3.5
–40° to +85°C, ramp rate 1°C/min,
5 cycles

Dielectric Strength and Impulse Tests

Dielectric (HiPot): IEC 60255-27:2013, Section 10.6.4.3
IEEE C37.90-2005
1.0 kVac on analog outputs, Ethernet ports
2.0 kVac on analog inputs, IRIG
2.5 kVac on contact I/O
3.6 kVac on power supply,
IN and VN terminals

Impulse: IEC 60255-27:2013, Section 10.6.4.2
Severity Level: 0.5 J, 5 kV on power supply, contact I/O, ac current, and voltage inputs
0.5 J, 530 V on analog outputs
IEEE C37.90-2005
Severity Level: 0.5 J, 5 kV
0.5 J, 530 V on analog outputs

RFI and Interference Tests

EMC Immunity

Electrostatic Discharge Immunity: IEC 60255-1:2010, Section 6.12.3.5
IEEE C37.90.3:2001
Severity Level 4
8 kV contact discharge
15 kV air discharge

Radiated RF Immunity: IEC 60255-1:2010, Section 7.2.4
10 V/m
IEEE C37.90.2-2004
20 V/m

Fast Transient, Burst Immunity: IEC 60255-1:2010, Section 7.2.8
10 Vrms

Conducted RF Immunity: IEC 60255-1:2010, Section 7.2.9

Magnetic Field Immunity:

Power Supply Immunity: IEC 60255-1:2010, Section 7.2.10

EMC Emissions

Conducted Emissions: IEC 60255-26:2013 Class A
FCC 47 CFR Part 15.107 Class A
ICES-003 Issue 6
EN 55011:2009 + A1:2010 Class A
EN 55022:2010 + AC:2011 Class A
EN 55032:2012 + AC:2013 Class A
CISPR 11:2009 + A1:2010 Class A
CISPR 22:2008 Class A
CISPR 32:2015 Class A

Radiated Emissions: IEC 60255-26:2013 Class A
FCC 47 CFR Part 15.109 Class A
ICES-003 Issue 6
EN 55011:2009 + A1:2010 Class A
EN 55022:2010 + AC:2011 Class A
EN 55032:2012 + AC:2013 Class A
CISPR 11:2009 + A1:2010 Class A
CISPR 22:2008 Class A
CISPR 32:2015 Class A
Processing Specifications and Oscillography

AC Voltage and Current Inputs: 32 samples per power system cycle
Frequency Tracking Range: 15–70 Hz (requires ac voltage inputs option)
Digital Filtering: One-cycle cosine after low-pass analog filtering. Net filtering (analog plus digital) rejects dc and all harmonics greater than the fundamental.

Protection and Control Processing: Processing interval is 4 times per power system cycle (except for math variables and analog quantities, which are processed every 25 ms). The 51 elements are processed 2 times per power system cycle. Analog quantities for rms data are determined through use of data averaged over the previous 8 cycles.

Oscillography

Length: 15, 64, or 180 cycles
Sampling Rate: 32 samples per cycle unfiltered
4 samples per cycle filtered
Trigger: Programmable with Boolean expression
Format: ASCII and Compressed ASCII
Binary COMTRADE (32 samples/cycle unfiltered)
Time-Stamp Resolution: 1 ms
Time-Stamp Accuracy: ±5 ms

Sequential Events Recorder

Time-Stamp Resolution: 1 ms
Time-Stamp Accuracy: (With Respect to Time Source) for all Relay Word bits except those corresponding to digital inputs (INxxx): ±5 ms
Time-Stamp Accuracy: (With Respect to Time Source) for Relay Word bits corresponding to digital inputs (INxx): 1 ms

Relay Elements

Instantaneous/Definite-Time Overcurrent (50P, 50G, 50N, 50Q)
Pickup Setting Range, A secondary
5 A Model: 0.50–96.00 A, 0.01 A steps
1 A Model: 0.10–19.20 A, 0.01 A steps
Accuracy: ±3% of setting plus ±0.02 • INOM A secondary (steady state)
±5% of setting plus ±0.02 • INOM A secondary (transient)
±6% of setting plus ±0.02 • INOM A secondary (transient for 50Q)
Time Delay: 0.00–5.00 seconds, 0.01-second steps
0.00–120.00 seconds, 0.01-second steps (50Q)
±0.5% plus ±0.25 cycle
Pickup/Dropout Time: <1.5 cycle

Inverse-Time Overcurrent (51P, 51G, 51N, 51Q)
Pickup Setting Range, A secondary
5 A Model: 0.50–16.00 A, 0.01 A steps
1 A Model: 0.10–3.20 A, 0.01 A steps
Accuracy: ±5% of setting plus ±0.02 • INOM A secondary (steady-state pickup)

Time Dial
U.S.: 0.50–15.00, 0.01 steps
IEC: 0.05–1.00, 0.01 steps
Accuracy: ±1.5 cycles plus ±4% between 2 and 30 multiples of pickup (within rated range of current)

Differential (87)
Unrestrained Pickup Range: 1.0–20.0 in per unit of TAP
Restrained Pickup Range: 0.1–1.0 in per unit of TAP
Pickup Accuracy (A secondary)
5 A Model: ±5% plus ±0.10 A
1 A Model: ±5% plus ±0.02 A
Unrestrained Element
Pickup Time: 0.8/1.0/1.9 cycles (Min/Typ/Max)
Restrained Element (With Harmonic Blocking)
Pickup Time: 1.5/1.6/2.2 cycles (Min/Typ/Max)
Restrained Element (With Harmonic Restraint)
Pickup Time: 2.6/2.7/2.86 cycles (Min/Typ/Max)

Harmonics

Pickup Range (% of fundamental): 5%–100%
Pickup Accuracy (A secondary)
5 A Model: ±5% plus ±0.10 A
1 A Model: ±5% plus ±0.02 A
Time Delay Accuracy: ±0.5% plus ±0.25 cycle

Restricted Earth Fault (REF)

Pickup Range (per unit of INOM of neutral current inputs, IN, and/or Winding 3): 0.05–3.00 per unit, 0.01 per-unit steps
Pickup Accuracy (A secondary)
5 A Model: ±5% plus ±0.10 A
1 A Model: ±5% plus ±0.02 A
Timing Accuracy
Directional Output
Maximum Pickup/Dropout Time: 1.75 cycles
ANSI Extremely Inverse TOC Curve (U4 With 0.5 Time Dial): ±5 cycles plus ±5% between 2 and 30 multiples of pickup (within rated range of current)

Undervoltage (27P, 27PP, 27S)

Setting Range: OFF, 12.50–300.00 V (phase elements, phase-to-phase elements with delta inputs or synchronism voltage input)
OFF, 12.50–520.00 V (phase-to-phase elements with wye inputs)
Accuracy: ±1% of setting plus ±0.5 V
Pickup/Dropout Time: <1.5 cycle
Time Delay: 0.00–120.00 seconds, 0.01-second steps
Accuracy: ±0.5% plus ±0.25 cycle

Setting Range: OFF, 12.50–300.00 V (phase elements, phase-to-phase elements with delta inputs or synchronism voltage input)
OFF, 12.50–520.00 V (phase-to-phase elements with wye inputs)
Accuracy: ±1% of setting plus ±0.5 V
Pickup/Dropout Time: <1.5 cycle
Time Delay: 0.00–120.00 seconds, 0.01-second steps
Accuracy: ±0.5% plus ±0.25 cycle
Inverse-Time Undervoltage (27I)
Setting Range: OFF, 2.00–300.00 V (phase elements, positive-sequence elements with delta inputs or synchronism-check voltage input), OFF, 2.00–520.00 V (phase-to-phase elements with wye inputs)
Accuracy: ±1% of setting plus ±0.5 V
Time Dial: 0.00–16.00 s
Accuracy: ±1.5 cycles plus ±4% between 0.95 and 0.1 multiples of pickup

Inverse-Time Overvoltage (59I)
Setting Range: OFF, 2.00–300.00 V (phase elements, sequence elements, or phase-to-phase elements with delta inputs or synchronism voltage input), OFF, 2.00–520.00 V (phase-to-phase elements with wye inputs)
Accuracy: ±1% of setting plus ±0.5 V
Time Dial: 0.00–16.00 s
Accuracy: ±1.5 cycles plus ±4% between 1.05 and 5.5 multiples of pickup

Volts/Hertz (24)
Definite-Time Element
Pickup Range: 100%–200%
Steady-State Pickup Accuracy: ±1% of set point
Pickup Time: 25 ms @ 60 Hz (Max)
Time-Delay Range: 0.00–400.00 s
Time-Delay Accuracy: ±0.1% plus ±4.2 ms @ 60 Hz
Reset Time Range: 0.00–400.00 s
Inverse-Time Element
Pickup Range: 100%–200%
Steady-State Pickup Accuracy: ±1% of set point
Pickup Time: 25 ms @ 60 Hz (Max)
Curve: 0.5, 1.0, or 2.0
Factor: 0.1–10.0
Timing Accuracy: ±4% plus ±25 ms @ 60 Hz, for V/Hz above 1.05 multiples (Curve 0.5 and 1.0) or 1.10 multiples (Curve 2.0) of pickup setting, and for operating times >4 s
Reset Time Range: 0.00–400.00 s
Composite-Time Element
Combination of definite-time and inverse-time specifications
User-Definable Curve Element
Pickup Range: 100%–200%
Steady-State Pickup Accuracy: ±1% of set point
Pickup Time: 25 ms @ 60 Hz (Max)
Curve: 0.5, 1.0, or 2.0
Factor: 0.1–10.0
Timing Accuracy: ±4% plus ±25 ms @ 60 Hz, for V/Hz above 1.05 multiples (Curve 0.5 and 1.0) or 1.10 multiples (Curve 2.0) of pickup setting, and for operating times >4 s
Reset Time Range: 0.00–400.00 s

Directional Power (32)
Instantaneous/Definite-Time, 3 Phase Elements
Type: +W, -W, +VAR, -VAR
Pickup Settings Range, VA secondary
5 A Model: 1.0–6500.0 VA, 0.1 VA steps
1 A Model: 0.2–1300.0 VA, 0.1 VA steps

Frequency (81)
Setting Range: OFF, 15.00–70.00 Hz
Accuracy: ±0.01 Hz (V1 > 60 V) with voltage tracking
Pickup/Dropout Time: <4 cycles
Time Delay: 0.00–400.00 seconds, 0.01-second steps
Accuracy: ±0.5% plus ±0.25 cycle

RTD Protection
Setting Range: OFF, 1°–250°C
Accuracy: ±2°C
RTD Open-Circuit Detection: >250°C
RTD Short-Circuit Detection: <30°C
RTD Types: PT100, NI100, NI120, CU10
RTD Lead Resistance: 25 ohm max. per lead
Update Rate: 3 s
Noise Immunity on RTD Inputs: To 1.4 Vac (peak) at 50 Hz or greater frequency
RTD Fault/Alarm/Trip Time Delay: Approx. 12 s

Synchronism Check (25)
Pickup Range, Secondary Voltage: 0.00–300.00 V
Pickup Accuracy, Secondary Voltage: ±1% plus ±0.5 volts (over the range of 2.00–300.00 V)
Slip Frequency Pickup Range: 0.05 Hz–0.50 Hz
Slip Frequency Pickup Accuracy: ±0.02 Hz
Phase Angle Range: 0°–80°
Phase Angle Accuracy: ±4°

Station Battery Voltage Monitor
Operating Range: 0–350 Vdc (300 Vdc for UL purposes)
Pickup Range: 20.00–300.00 Vdc
Pickup Accuracy: ±2% of setting plus ±2 Vdc
Timers
Setting Range: Various
Accuracy: ±0.5% of setting plus ±1/4 cycle

Metering Accuracy
Accuracies are specified at 20°C, nominal frequency, ac currents within (0.2–20.0) x I_NOM A secondary, and ac voltages within 50–250 V secondary unless otherwise noted.

Phase Currents
Magnitude Accuracy: ±1.0% (I_NOM = 1 A or 5 A)
Phase Accuracy: ±1.0° (I_NOM = 5 A), ±10° at 0.5–20.0 times I_NOM (I_NOM = 1 A), ±2.5° at 0.2–0.5 times I_NOM (I_NOM = 1 A)
Differential Quantities: ±5% of reading plus ±0.1 A (5 A nominal), ±0.02 A (1 A nominal)
Current Harmonics: ±5% of reading plus ±0.1 A (5 A nominal), ±0.02 A (1 A nominal)
I1 Positive-Sequence Current: ±2% of reading
IG (Residual Current): ±2% of reading, ±2° @ 0.2–0.5 A for relays with INOM = 1 A
IN (Neutral Current): ±1% of reading, ±1° @ 0.2–0.5 A for relays with INOM = 1 A
3I2 Negative-Sequence Current: ±2% of reading
System Frequency: ±0.01 Hz of reading for frequencies within 15–70 Hz (requires ac voltage inputs, V1 > 60 V)
Line-to-Line Voltages: ±1% of reading, ±1° for voltages within 24–264 V
Line-to-Ground Voltages: ±1% of reading, ±1° for voltages within 24–264 V
Voltage Harmonics: ±5% of reading plus ±0.5 V
V1 Positive-Sequence Voltage: ±2% of reading for voltages within 24–264 V
3V2 Negative-Sequence Voltage: ±2% of reading for voltages within 24–264 V
Real Three-Phase Power (kW): ±3% of reading for 0.10 < pf < 1.00
Reactive Three-Phase Power (kVAR): ±3% of reading for 0.00 < pf < 0.90
Apparent Three-Phase Power (kVA): ±3% of reading
Power Factor: ±2% of reading for 0.86 ≤ pf ≤ 1
RTD Temperatures: ±2°C

Synchrophasor Accuracy

Maximum Message Rate
Nominal 60 Hz System: 60 messages per second
Nominal 50 Hz System: 50 messages per second
The following are the accuracy specifications for voltages and currents for the SEL-787-3E and SEL-787-3S models. Note that the SEL-787-4X model does not track frequency, so the accuracy specifications are only applicable when the applied signal frequency equals FNOM.

Accuracy for Voltages
Level 1 compliant as specified in IEEE C37.118 under the following conditions for the specified range.

Conditions
- At maximum message rate
- When phasor has the same frequency as the positive-sequence voltage
- Frequency-based phasor compensation is enabled (PHCOMP := Y)
- The narrow bandwidth filter is selected (PMAPP := N)

Range
Frequency: ±0.5 Hz of nominal (50 or 60 Hz)
Magnitude: 30 V–250 V
Phase Angle: –179.99° to 180°
Out-of-Band Interfering Frequency (Fs): 10 Hz ≤ Fs ≤ (2 • FNOM)

Accuracy for Currents
Level 1 compliant as specified in IEEE C37.118 under the following conditions for the specified range.

Conditions
- At maximum message rate
- When phasor has the same frequency as the positive-sequence voltage
- Frequency-based phasor compensation is enabled (PHCOMP := Y)
- The narrow bandwidth filter is selected (PMAPP := N)

Range
Frequency: ±0.5 Hz of nominal (50 or 60 Hz)
Magnitude: (0.4–2) • INOM (INOM = 1 A or 5 A)
Phase Angle: –179.99° to 180°
Out-of-Band Interfering Frequency (Fs): 10 Hz ≤ Fs ≤ (2 • FNOM)