Guarantee fast and dependable operation for power protection and mission-critical applications

- Unmatched communications performance designed for mission-critical applications.
- Minimized network disruptions with restoration of communications traffic within 5 ms.
- Optimized multiplexing of substation circuits through Multiprotocol Label Switching (MPLS) or Carrier Ethernet core networks.
- Flexible SONET and Ethernet transport options that support multiple network use cases and enable integration with private or public packet-based networks.
Dependable Communications for Critical Infrastructure

A dependable system requires network resiliency, comprehensive network management, robust security, and the flexibility to support your current and future communications needs. That’s why SEL designed the ICON Integrated Communications Optical Network—a wide-area networking multiplexer optimized for industrial and utility applications.

You can configure the ICON to operate as a SONET or Ethernet multiplexer to address the following network use cases:

- Segregated operational technology (OT)—SONET transport
- Segregated OT—Ethernet transport
- Converged IT/OT—MPLS or Carrier Ethernet core network
- Migrating analog leased services

ICON virtual synchronous networking (VSN) preserves the performance characteristics of time-division multiplexing (TDM) when converting to Ethernet as a transport protocol. By combining TDM and Ethernet transport options with a comprehensive range of data interfaces, the ICON makes it easy to migrate legacy network technologies to a converged IT/OT packet-based solution. The ICON interoperates with MPLS or Carrier Ethernet core networks to provide a hardened OT edge multiplexer for mission-critical applications.

Whether it’s for substation automation, security surveillance, or monitoring and protecting critical equipment, the ICON is designed and built to address demanding communications needs and operate reliably in extreme environments.

The ICON comes in two available form-factors: the standard 19-inch rack-mount chassis and the half-width cube chassis.
The Best Transport Option to Solve Your Networking Needs

The traditional model for utility communications is to build separate segregated networks for IT and OT. A dedicated network for mission-critical OT applications provides the highest level of control and performance under all network conditions. However, many utilities see efficiency gains by converging IT and OT networks. Whether your network is segregated or converged, the SEL ICON provides the highest level of performance for critical circuits.

Segregated OT Network—SONET Transport

A dedicated network provides the best performance and the highest level of control over network traffic for mission-critical OT applications. Many utilities rely on SONET to provide a dedicated network for their critical protection traffic. SONET provides dedicated bandwidth for each application and uses a synchronous transport structure to achieve deterministic and low-latency communications that are unaffected by traffic on the system. SONET provides the best-performing solution for critical teleprotection applications by offering <1 ms latency, <0.01 ms asymmetry, and <5 ms healing.

Network Topologies and Use Cases

• With the ICON, you will be able to run and maintain your SONET network infrastructure well into the future.
• The ICON supports single-ring, multiple-ring, linear, and hybrid ring/linear topologies.
• Flexible line rate support (OC-3, OC-12, and OC-48) enables the ICON to use TDM radio or microwave links to provide communication to sites that lack fiber connectivity.
• Using SONET’s synchronous communications architecture, the ICON can distribute time over a WAN with better than 1 μs accuracy, even in the event of a GPS failure.
Segregated OT Network—Ethernet Transport

ICON deterministic packet transport is an innovative approach that delivers mission-critical traffic with low latency over an Ethernet transport network. It preserves the performance characteristics of TDM, which is presently available in the ICON SONET platform, with no performance degradation when converting to Ethernet as a transport protocol.

Ethernet transport allows you to migrate your network to a packet-based technology. Packetizing at STS-1 line rates, rather than using DS0 circuit emulation, and transporting a regularly spaced stream of Ethernet packets minimizes the jitter buffer size (13 µs). These attributes let you maintain TDM performance over Ethernet transport.

Network Topologies and Use Cases

- ICON Ethernet transport can operate in single-ring, multiple-ring, linear, and hybrid ring/linear topologies.
- ICON can run with Ethernet-only transport or mixed Ethernet/SONET, providing the ideal migration solution.
- The Ethernet transport mode lets you choose Ethernet radio options for network links that don’t have fiber connectivity.

Mixed SONET and Ethernet transport.

Mixed transport with linear spurs.
Converged IT/OT Network

With the advent of high-bandwidth packet-based technologies, such as MPLS and Carrier Ethernet, there is a clear trend within many utilities to move away from using segregated IT and OT networks. Instead, these utilities are choosing an integrated or converged network model that uses a common network to support both IT and OT services. The primary motivation for this move is to increase the efficiency of assets and resources.

If you have decided on a converged IT/OT network approach, you don't have to compromise on network performance for critical protection circuits. ICON VSN delivers mission-critical traffic with low and deterministic latency over an Ethernet transport network.

Network Topologies and Use Cases

- In the converged mode of operation, the ICON operates as an edge multiplexer with support for all substation circuits (EIA-232, EIA-422, EIA-485, G.703, 2-wire FXO/FXS, 4-wire voice frequency, direct transfer trip [DTT], IEEE C37.94, and DS1) and delivers a Gigabit Ethernet line interface.

- ICON deterministic transport uses point-to-point links provisioned through MPLS or Carrier Ethernet core networks combined with an innovative, ultra-efficient approach of packetizing TDM data to achieve <1 ms latency, <0.1 ms asymmetry, and <5 ms healing.

- The ICON's simplified provisioning model and bandwidth-efficient packetization process ensure the performance of critical circuits is maintained as changes are made on the core network. This process also avoids the need to individually manage each protection circuit.

- Even in a converged network model, the ICON makes it possible to maintain SONET for part of the network and use Ethernet for transport through the packet core network.
Migrating Analog Leased Services

With the major carriers announcing the end of service for leased analog services, many utilities are facing a forced migration to leased Ethernet circuits. This creates the challenge of maintaining adequate latency and asymmetry performance for critical analog circuits. The ICON provides a solution.

Network Topologies and Use Cases

You can combine ICON VSN with dedicated analog drop interfaces that include 2-wire FXO/FXS, 4-wire analog voice frequency, and DTT. These interfaces allow you to preserve existing analog end equipment and create a low-latency circuit through your leased service provider to maintain end-to-end communications channel performance for critical applications. Using the ICON, you can achieve an end-to-end latency of less than 5 ms for a contact transfer across leased Ethernet service.

Transporting an analog DTT circuit over a leased Ethernet network.
19" Rack-Mount Chassis
Product Overview

Protected Line Modules
- Internally wetted contact inputs
- IEEE C37.94 teleprotection interface

Async Module for EIA-232, EIA-422, and EIA-485 circuits

Server Module for network management, alarm I/O, and a GPS time reference

IRIG-B output ports

8-port Ethernet switch with Power over Ethernet (PoE)

Transfer Trip Module
- FXS and FXO Submodules

Crypto Module for encryption of SONET OC-48 WAN traffic

IEEE 1613-compliant packaging

Dual redundant power supplies

Seven slots for access modules
Half-Width Cube Chassis
Product Overview

- Protected Line Modules
- Dual redundant power supplies
- Server Module
- Two slots for access modules (Ethernet Access and Quattro Modules shown)
Customize Your System
With multiple module options, the ICON allows direct connectivity to end devices without intermediate equipment.

Access Modules
Ethernet Access Module—provides eight 10/100 Mbps Ethernet ports with PoE.
Ethernet Bridging Access Module—provides four 10/100/1000 Mbps copper ports plus four 100/1000 Mbps small form-factor pluggable (SFP) ports for Ethernet connectivity.
Transfer Trip Module—provides four contact inputs and four high-speed hybrid contact outputs for DTT, permissive overreaching transfer trip (POTT), permissive underreaching transfer trip (PUTT), directional comparison blocking (DCB), and directional comparison unblocking (DCUB) schemes.
Crypto Module—provides low-latency AES 256-bit encryption of the line ports between adjacent ICON nodes and is capable of securing two SONET OC-48 2.4 Gbps line channels simultaneously.
Quattro Module—provides slots for up to four Quattro Submodules that mount in one full-height ICON slot, saving space and power consumption.

Access Submodules—Data
Nx64F MM—provides an IEEE C37.94 teleprotection interface using multimode fiber.
Nx64F SM—provides an IEEE C37.94 teleprotection interface using single-mode fiber.
Async—provides up to six EIA-232, EIA-422, and EIA-485 circuits.
DS1 Async—provides an asynchronous DS1/T1 interface.
DS1 Sync—provides a synchronous DS1/T1 interface.
DS1 Psync—provides a redundant synchronous DS1/T1 interface.
G.703—provides a single codirectional, 64 kbps, G.703-compliant interface.
422 Sync—provides a single full-duplex synchronous 64 kbps interface.

Access Submodules—Voice
4-Wire Voice Frequency (VF)—provides analog modem communications.
2-Wire FXS and FXO—offer analog voice communications for telephone and PBX circuit transport.

Line Module
The Line Module provides the TDM transport interface between adjacent nodes. It contains an integrated switch capable of supporting two 1,000 Mbps SFP ports and eight 10/100 Mbps Ethernet copper ports for local Ethernet traffic. Two IRIG-B output ports provide time distribution to connected intelligent electronic devices (IEDs).

Protected Line Module (PLM)
The PLM provides a redundant SONET and/or Ethernet line interface to ensure communications are maintained in the event of a module failure. Users have the option to install two PLMs instead of the single line module.

Server Module
The Server Module provides the interface between the ICON and the SEL-5051 Client Network Management System (NMS) Software or third-party Simple Network Management Protocol (SNMP) manager. The Server Module also contains a GPS satellite receiver for network timing and for providing the real-time clock for time distribution to connected IEDs.
Manage Your Network

Whether your network is large or small, keeping it running smoothly can be a challenge. The ICON simplifies this task with SEL-5051 Client and SEL-5052 Server NMS Software—indispensable tools for maintaining a secure, reliable, and efficient communications infrastructure.

In the client server architecture, the SEL-5051 Client Software connects to the SEL-5052 Server Software to provide an efficient solution for managing network access for multiple users. The SEL-5052 Server Software offers centralized user authentication (with Lightweight Directory Access Protocol [LDAP] integration), security, settings, alarms, and event management. The SEL-5052 Server Software also includes system health checks and circuit tracing, with the ability to remove circuits.
NMS Software

SEL ICON networks are managed by either standalone SEL-5051 Client Software or a combination of SEL-5051 Client and SEL-5052 Server Software.

SEL-5051 Client NMS Software

SEL-5051 Client Software offers the following features for the configuration and management of your ICON network.

Graphical Network Representation
Provide network discovery and graphical display of a complete ICON network. You can view the status of each ICON node and associated line links.

Configuration Management
Provision Ethernet and TDM circuits. You can manage firmware upgrades remotely and schedule upgrades for specific times and dates.

Alarm Management
View, sort, filter, and archive the time-stamped alarm history for each node on the network.

Event Management
Track administrator and individual user access. You can monitor valid and invalid user logon attempts as well as session settings change logs.

Security Management
Automatically generate security reports for compliance with NERC CIP security logging.

Performance Monitoring
Monitor the performance of TDM and Ethernet communications using comprehensive network statistics.

SEL-5052 Server NMS Software

SEL-5052 Server Software offers centralized user security, settings, alarms, and event management.

User Authentication
Improve the security of the ICON network by having your LDAP servers authenticate and authorize users on the ICON network. Once set up, the login mode allows LDAP or local authentication.

Circuit Removal
Enable authorized users to remove a circuit by completely deprovisioning all settings and releasing bandwidth to be reused for a future circuit.

System Health Check
Analyze the ICON network for common configuration errors to prevent issues with network operation.

SNMP Traps
Securely send ICON network alarm information to third-party network management systems for centralized alarm aggregation and management.

Circuit Trace
Collect and analyze the settings from a node to identify and show configured circuits and their settings.
Applications

Transmission Line Protection
Implement current differential protection and DTT schemes with SEL relays. The ICON communicates between relays with IEEE C37.94 circuits carried over a fiber-optic link. You can apply the ICON Transfer Trip Module to sense or assert contact closures for pilot protection schemes. The ICON network monitors and reports channel latency in real time. Selecting the shortest path between terminals as the primary path ensures that the system always reverts back to your primary configuration in the event of a path failure and subsequent restoration. These features, combined with robust IEEE 1613 environmental operating specifications, make the ICON ideal for critical power applications.

Line Current Differential Protection Across MPLS or Carrier Ethernet Core Networks
The SEL ICON is designed to provide low-latency services for substation and OT applications. With the ICON, you can provision IEEE C37.94, serial, and DTT teleprotection circuits between substation facilities, while allowing native Ethernet services to transit through core network infrastructure. Using the ICON deterministic Ethernet transport technology, it is possible to achieve TDM performance across an MPLS or Carrier Ethernet packet core network to deliver <1 ms latency, <0.1 ms asymmetry, and 5 ms healing.
Synchrophasor Communications
Transport synchronized phasor measurements (synchrophasors) to enable real-time measurement of electrical quantities across a power system. The ICON provides high-accuracy time distribution and Ethernet communications to support synchrophasor data collection. The ICON can maintain better than 1 µs timing accuracy even if the GPS signal is lost, preserving the operation of synchrophasor applications.

Legacy Communications Aggregation
Consolidate legacy DS1 and DS0 circuits between locations onto the ICON WAN to eliminate redundant circuit lease and maintenance costs. You can apply ICON FXS/FXO modules to establish analog telephone, PBX, fax, and modem circuits in every location. The ICON accepts channelized DS1 circuits from any source. You can groom the individual DS0 circuits to terminate anywhere within the network.

IEC 61850 Network Optimization
Ensure optimal performance of IEC 61850 systems by supporting VLANs and Ethernet Pipes (Epipes). Epipes can contain and isolate Layer 2 broadcast commands, such as IEC 61850 Generic Object-Oriented Substation Event (GOOSE) messages, from all other noncritical traffic on the network, ensuring very low-latency data communications paths between IEDs.
General

| Line Modules | 8020-01 Line Module | SFP ports A/B/C/D: 2.4 Gbps
| | | SFP ports E/F: GigE
| | | 10/100 Ethernet ports: 8 RJ-45 with 4 PoE
| | | IRIG-B out: 2 BNC
| 8021-01 Protected Line Module | SFP ports A/B/C/D: 155 Mbps, 622 Mbps, 1 Gbps, or 2.4 Gbps
| | | IRIG-B out: 2 BNC
| Server Module | 8030-01 Server Module | NMS ports: USB, RJ-45
| | | GPS antenna: TNC
| | | IRIG-B in: BNC

| Chassis and Power Modules | 19-Inch Rack Mount Chassis | 10 available slots
| | 8011-01 HV AC/DC 120–240 V, IEC C6 Line Cord | Supply voltage: 102–264 Vac, 50/60 Hz or 88–300 Vdc
| | 8011-02 HV AC/DC 120–240 V, Terminal Block | Supply voltage: 102–264 Vac, 50/60 Hz or 88–300 Vdc
| | 8011-03 MV DC 24–48 V, Terminal Block | Supply voltage: 18–56 Vdc
| Half-Width Cube Chassis | 8002-01 Half-Width Chassis
| | 8010-01 HV AC/DC 120–240 V, IEC C6 Line Cord | Supply voltage: 102–264 Vac, 50/60 Hz or 88–300 Vdc
| | 8010-02 HV AC/DC 120–240 V, Terminal Block | Supply voltage: 102–264 Vac, 50/60 Hz or 88–300 Vdc

| Access Modules | 8035-01 Ethernet Access Module | 10/100 Ethernet ports: 8 RJ-45 with 4 PoE
| | 8036-01 Ethernet Bridging Access Module | 100/1000 Ethernet ports: 4 SFP
| | 8051-01 Nx64F Multimode Submodule | ST ports: 1 Rx, 1 Tx
| | 8051-02 Nx64F Single-Mode Submodule | ST ports: 1 Rx, 1 Tx
| | 8053-01 Data Async Submodule | Ports: 2 RJ-45
| | 8055-01 422 Sync Submodule | Port: 1 RJ-45
| | 8056-01 G.703 Submodule | Port: 1 RJ-48C
| | 8065-01 4-Wire VF Submodule | Ports: 2 RJ-45
| | 8066-01 2-Wire FXS Submodule | Port: 1 RJ-11
| | 8067-01 2-Wire FXO Submodule | Ports: 2 RJ-11
| | 8041-01, -04 Transfer Trip Module | Commands: 4
| | 8057-01 DS1 Async Submodule | Ports: 4 RJ-48C
| | 8057-02 DS1 Sync Submodule | Ports: 4 RJ-48C
| | 8057-03 DS1 Psync Submodule | Ports: 4 RJ-48C

| Other | 8029-01 Crypto Module | Ports: 4 SFP, 2.4 Gbps

| System Specifications | Network Topologies | Linear and multiple rings with single or dual interconnected nodes, plus linear spur and subtended ring topologies
| | Path Switching Time | <5 ms
| | Convection-Cooled | No fans
| | Operating Temperature | −20° to +65°C (−4° to +149°F)
| | Mounting | 8", 19", or 23" rack or panel mount