SEL-T400L
Time-Domain Line Protection

Built for speed, security, and simplicity

• Traveling-wave-based and incremental-quantity-based line protection schemes as fast as 1 ms with traditional pilot channels and over direct fiber-optic channels.
• Communications-independent Zone 1 element, operating in as fast as 3 ms.
• Suitable for single-pole tripping, series-compensated lines, and dual-breaker terminals.
• Communications-independent fault locator accurate to a single tower span.
• 1 MHz fault recorder and Fast Time-Domain Values (FTDV) streaming.
Unmatched Performance

The SEL-T400L Time-Domain Line Protection is an ultra-high-speed transmission line relay, traveling-wave fault locator, and high-resolution event recorder. The SEL-T400L is a quantum leap in line protection performance. Using traveling waves and incremental quantities, the SEL-T400L breaks the speed barrier of phasor-based relays. In power system protection, every millisecond counts. Faster fault clearing improves public and utility personnel safety, widens transient stability margins, limits equipment wear, improves power quality, and limits property damage. The SEL-T400L protects series-compensated lines and provides single-pole tripping.

The SEL-T400L locates faults within tens of milliseconds of their occurrence using traveling-wave fault-locating technology and issues an autoreclose cancel (ARC) signal for faults on underground sections of hybrid lines with overhead and underground sections. The relay’s fault-locating calculations are accurate to a single tower span, regardless of the line length, with or without a communications channel.

The SEL-T400L provides high-resolution event records sampled at 1 MHz, 18-bit resolution. Using these events, you can analyze transients, such as traveling waves from faults, breaker restrike, or partial discharge.

The SEL-T400L allows you to test its protection and fault-locating functions without the need for a physical relay test set by using the built-in event playback function. Test the performance of the SEL-T400L using events recorded in the field or simulated with electromagnetic transient programs.
Traveling-Wave Differential Protection Scheme

The first ever traveling-wave differential (TW87) protection scheme uses current traveling waves to detect in-zone faults with operating times in the range of 1–5 ms, depending on the line length. The TW87 scheme works over a direct point-to-point fiber-optic channel and does not rely on external time sources for aligning remote currents. It uses traditional CTs and wiring.

Distance Protection Element

The underreaching distance (TD21) protection element uses incremental voltages and currents to make a tripping decision, independent from communications. The element can be set as high as 80 percent of the line length, has a transient overreach below 10 percent, and operates between 2 and 5 ms, depending on the fault location, system short-circuit level, fault resistance, and point on wave.

Permissive Overreaching Transfer Trip (POTT) Protection Scheme

The POTT scheme uses ultra-fast and sensitive directional elements for fault direction discrimination. The traveling-wave directional element (TW32) operates in 0.1 ms, and the incremental quantity directional element (TD32) operates in 1 to 2 ms, depending on system conditions. Sending phase-segregated permissive trip signals, the POTT scheme has excellent performance for evolving and intercircuit faults. Use IEEE C37.94 encoding for signaling the remote-end SEL-T400L over compliant multiplexers. Use SEL MB8 encoding and a media converter to interface with multiplexers not compliant with IEEE C37.94.
Refreshing Simplicity

The SEL-T400L is first and foremost a protective relay. Designed with simplicity in mind, the SEL-T400L minimizes the number of settings and keeps the settings selection as straightforward as possible. The SEL-T400L offers refreshing simplicity compared with feature-heavy multifunction intelligent electronic devices. Improve your workforce efficiency and enhance protection security by avoiding human errors.

The SEL-T400L uses preconfigured, easy-to-set protection logic. The relay requires only a handful of protection settings, and most of them are nameplate data, such as CT and PT ratios, line length and impedance, nominal voltage and frequency, and so on. Power system configuration changes have far less impact on the SEL-T400L elements than on traditional phasor-based protection. The few settings that do require protection judgment and knowledge are either multiple-choice preferences or simple overcurrent or impedance thresholds.

Unparalleled Fault-Locating Accuracy

In the last two decades, protection engineers have come to expect an impedance-based fault locator as a standard feature in a line protective relay. From now on, expect line protective relays to offer traveling-wave fault locating with ten-fold better accuracy. The SEL-T400L incorporates a single-ended traveling-wave fault-locating method, which calculates the fault location by analyzing only the local current traveling waves without the need for a communications channel. The relay also provides a double-ended method, which uses the first traveling waves arriving at both line terminals and requires communications over the differential protection fiber-optic channel. The SEL-T400L performs fault-locating calculations within tens of milliseconds after the fault, and it issues an ARC signal for faults on the underground sections of hybrid lines with overhead and underground sections. The traveling-wave fault-locating technology in the SEL-T400L has a field-proven accuracy in the order of about one tower span, regardless of the line length.
High-Resolution Oscillography

Using the SEL-T400L is like applying an oscilloscope to the power system. Now you can look at currents and voltages through a 1 MHz lens. The SEL-T400L stores as many as 50 events with a back-to-back recording capability and a duration of 1.2 seconds per event. The SEL-T400L also offers a 10 kHz COMTRADE file that contains currents and voltages sampled at 10 kHz, selected protection operating quantities, Relay Word bits, settings, and fault location and event summary data.

When using a differential fiber-optic channel, the local 1 MHz and 10 kHz records contain remote voltages and line currents, as well.

![High-resolution oscillography shows a breaker restrike while de-energizing a shunt reactor.](image)

Visualize traveling-wave event reports using SEL-5601-2 SYCHROWAVE® Event Software.
Product Overview

USB 2.0 port for SEL Fast Meter and Fast SER protocols as well as for local engineering access.

Display for viewing metering, event, and fault location information.
Large slide-in label pocket for diagrams or asset labels.

LEDs show faulted phases, element operation, and status of relay and communications.
High-speed trip-rated output contacts for ultra-high-speed protection.

Three voltage and six current inputs for single- and dual-breaker applications.
An 850 nm 1000BASE-SX multimode small form-factor pluggable (SFP) transceiver is installed in Port 5 for remote engineering access with FTP and Telnet and for SCADA applications with SEL Fast Meter, SEL Fast SER protocols, DNP3 LAN/WAN, and Fast Time-Domain Values (FTDV).

Install a Gigabit SFP transceiver in Port 6 for the point-to-point fiber-optic differential (TW87) protection channel.

Universal power supply operating voltage range:
85–300 Vdc
85–264 Vac

IRIG-B time input for nanosecond-accurate event reports.

Millisecond Mirrored Bits communications ports for connecting to a remote SEL-T400L (POTT and DTT applications), to a local SEL relay (breaker failure and autoreclose applications), or to an SEL remote I/O module for legacy applications over contact I/O.
Testing Made Easy

The built-in current and voltage playback feature of the SEL-T400L provides new opportunities for relay testing. To test the SEL-T400L, you can upload and play back current and voltage signals recorded by SEL-T400L or SEL-400 series relays or digital fault recorders in the field or generated using transient simulation software. This capability allows a protection engineer to easily validate relay settings and carry out trip analysis using only a “bench top” relay (no test set required). It allows a commissioning engineer to test relay settings without the need for secondary injection after verifying the relay hardware, especially the voltage and current inputs and the tripping outputs.

Use the SEL Playback File Conversion Utility in acSELerator QuickSet SEL-5030 Software to convert any IEEE C37.111 COMTRADE file that is suitable for SEL-T400L testing into the SEL playback file format. You can use field records captured at 1 kHz sampling rate or above to test incremental quantity elements and impedance-based fault locators, and field records captured at 1 MHz and above for testing traveling-wave elements, schemes, and fault locators. Use the Event Playback Test Dashboard in QuickSet to upload and manage test files in the relay memory and to execute and control the event playback tests. You can schedule and execute event playback in multiple relays based on the absolute time for end-to-end testing of SEL-T400L protection schemes and double-ended fault locators.

Upload and play back test files using the built-in event playback capability.

Secondary injection testing of SEL-T400L I/O, metering, and incremental-quantity protection elements is straightforward. Today’s relay test sets provide adequate signals to test incremental-quantity protection elements.

Use the SEL-T4287 Traveling-Wave Test System to perform secondary injection testing of traveling-wave protection elements and the traveling-wave fault locator.

The SEL-T4287 generates nanosecond-timed traveling-wave currents. Perform end-to-end testing with two SEL-T4287 test sets synchronized via satellite clocks.
MegaScope™ Applications for Remote Monitoring and Diagnostics

With voltages and currents sampled at an unprecedented rate and resolution (1 MHz, 18 bits), the SEL-T400L is a powerful data acquisition device for advanced remote monitoring and diagnostics applications. The relay streams the high-resolution local and remote FTDV in real time via a Gigabit Ethernet port, opening a whole suite of new SEL-5611 SYNCHROWAVE® MegaScope Software applications for viewing power system events. These applications run on high-performance computing platforms, such as the SEL-3355 Computer. Using SEL-T400L data in real time, you can spot insulation problems, breaker transient voltage recovery or restrike events, switching events, and other high-frequency signatures over wide areas using the SEL-T400L data. For the first time, you have the ability to monitor your system continually across multiple buses at a 1 MHz sampling rate. Contact SEL (selinc.com/support) to obtain a detailed format description and tools (such as the preliminary MegaScope client software) to experiment with this advanced SEL-T400L functionality.

You can correlate local and remote current traveling waves using the SEL-T400L megahertz data. The red mark indicates the location and timing of a high-frequency persistent event, such as a failing insulator.
SEL-T400L Specifications

General

| **Six AC Current Inputs** | 5 A nominal
1 A nominal |
|---------------------------|-------------|
| **Three AC Voltage Inputs** | 57.7–144.3 Vac L-N (V_{NOM} = 100–250 Vac L-L)
Four-wire connection with a shared neutral |
| **Control Outputs** | Fast Hybrid (High-Speed, High-Current Interrupting) Form A
Rated voltage: 125–250 Vdc
Operational voltage range: 0–300 Vdc
Pickup time: ≤10 µs (resistive load)
Alarm Output (Form C)
Rated voltage: 125–250 Vdc
Operational voltage range: 0–300 Vdc |
| **Control Inputs** | Optoisolated (bipolar operation): 5 inputs with a shared common
Sampling rate: 10 kHz
Rated voltage: 125 Vdc |
| **Three Fiber Serial Ports** | Select either SEL MB8 encoding for signaling local SEL relays and SEL I/O devices or IEEE C37.94 encoding for signaling the remote-end SEL-T400L over compliant multiplexers.
When using SEL MB8 encoding, select the baud rate (19,200, 38,400, 57,600, or 115,200) on a per-port basis. When using IEEE C37.94 encoding, the data rate is 1 × 64 kbps. |
| **Front-Panel Port** | USB 2.0 |
| **Ethernet Port** | 1 Gbps, SFP
0.3 km multimode fiber |
| **Differential Protection Port** | 1 Gbps, SFP (order separately)
0.3/0.5 km multimode
10 km to 200 km single-mode fiber |
| **Precise Time** | Demodulated IRIG-B time input |
| **Streaming FTDV** | Voltages and currents sampled at 1 MHz, 18 bits
Streaming in real time via Gigabit (1 Gbps) SFP port |
| **Power Supply Operating Voltage Range** | 85–300 Vdc and 85–264 Vac |
| **Operating Temperature Range** | −40° to +85°C (−40° to +185°F) |
| **Weight and Dimensions** | 6.01 kg (13.25 lb)
482.6 mm W × 132.6 mm H × 235.7 mm D (19.00 in W × 5.22 in H × 9.28 in D) |

These exciting features are coming soon:

- Line monitor
- Multi-ended fault locating over the IEEE C37.94-compliant multiplexer
- MegaScope client software for FTDV

Visit selinc.com for the latest information.