Modern Solutions for Protection, Control, and Monitoring of Electric Power Systems

Contents

Preface

Acknowledgements

1. Looking to the future
 1.1. Introduction
 1.2. Time-synchronized measurements
 1.3. Distribution systems
 1.4. Transmission systems
 1.5. Transformers
 1.6. Buses
 1.7. Generators
 1.8. Wide-area systems
 1.9. Communications
 1.10. Integrated systems
 1.11. Cybersecurity
 1.12. Reliability and testing
 1.13. Providing complete solutions
 1.14. Asset management
 1.15. Call to action

2. Principles of time-synchronized systems
 2.1. Introduction
 2.2. Time-synchronized measurement applications
 2.3. Time synchronization
 2.4. Time-synchronized phasors
 2.4.1. Synchrophasor definition
 2.4.2. Phasor angle reference for power system networks
 2.4.3. Synchrophasors provide power system state information
 2.4.4. Phasor angle and frequency are indicators of power system dynamic performance
 2.5. Combining time-synchronized measurements with protection, control, and monitoring
 2.5.1. Architecture and advantages
 2.5.2. Performance of synchrophasor measurements
 2.6. Processing synchrophasor information
 2.6.1. Phasor data concentration
 2.6.2. Synchrophasor-based protection, control, and monitoring
 2.7. Synchrophasor systems
 2.7.1. Time sources
2.7.2. Phasor measurement devices
2.7.3. Synchrophasor processors
2.7.4. Communications networks
2.7.5. Application software

2.8. References

3. Distribution system protection, automation, and monitoring

3.1. Introduction
3.2. Limitations of traditional overcurrent protection
3.3. Modern solutions for distribution system protection, automation, and monitoring
 3.3.1. New abilities
 3.3.2. More sensitive fault detection
 3.3.3. Faster fault clearing
 3.3.4. Faster service restoration
 3.3.5. Higher reliability and lower cost
3.4. Negative-sequence overcurrent protection
 3.4.1. Negative-sequence overcurrent elements
 3.4.2. Coordinating negative-sequence overcurrent elements with phase overcurrent elements
3.5. Directional overcurrent protection
 3.5.1. Directional elements for phase fault protection
 3.5.2. Directional elements for ground fault protection
3.6. Improving ground fault protection sensitivity
 3.6.1. Ungrounded systems
 3.6.2. Resonant-grounded systems
 3.6.3. High-resistance grounded systems
 3.6.4. Effectively and low-impedance grounded systems
3.7. Effect of load current
 3.7.1. Traditional backup sensitivity limitations
 3.7.2. Increasing sensitivity for three-phase faults
 3.7.3. Increasing sensitivity for phase-to-phase faults
 3.7.4. Solving cold-load restoration current problems
 3.7.5. Avoiding sympathetic tripping
3.8. Distributed generation considerations
 3.8.1. Interconnection protection
 3.8.2. Distributed generation impacts utility system protection
3.9. High-speed distribution system protection
3.10. Reducing arc-flash hazards
 3.10.1. Methods for reducing arc-flash hazards
 3.10.2. Arc-flash protection
3.11. Distribution automation
 3.11.1. Distribution automation objectives
 3.11.2. Automatic throw-over schemes
 3.11.3. Distribution network fast-restoration schemes
 3.11.4. Centralized distribution automation systems
 3.11.5. Examples of distribution protection and automation systems
3.12. Faulted circuit indicators
 3.12.1. Benefits of faulted circuit indicators
 3.12.2. Faulted circuit indicator applications
3.12.3. Combine faulted circuit indicators and relays for fast fault location
3.12.4. Other application considerations
3.12.5. Looking to the future

3.13. References

4. Transmission line protection

4.1. Introduction
4.2. Transmission systems of today and tomorrow
4.3. Line protection principles
4.4. Directional overcurrent protection
4.5. Distance protection
 4.5.1. Basic principle
 4.5.2. Distance protection schemes
 4.5.3. Distance element input signals
 4.5.4. Mho distance elements
 4.5.5. Quadrilateral distance elements
 4.5.6. Adaptive polarization
 4.5.7. High-speed elements
4.6. Sources of distance element errors
 4.6.1. Infeed effect
 4.6.2. Fault resistance
 4.6.3. Mutual coupling
 4.6.4. Load encroachment
 4.6.5. Effect of unfaulted phases
 4.6.6. Coupling-capacitor voltage transformer transients
 4.6.7. Loss of potential
4.7. Directional comparison protection
 4.7.1. Basic schemes
 4.7.2. Communications channels
 4.7.3. Scheme comparison
 4.7.4. Hybrid directional comparison scheme
4.8. Differential protection
 4.8.1. Communications channels and data alignment
 4.8.2. Alpha-plane differential element
 4.8.3. Advanced differential protection for multiterminal lines
 4.8.4. Combining differential and directional comparison protection in one relay
4.9. Phase comparison protection
4.10. Line protection sensitivity
 4.10.1. System grounding
 4.10.2. Relay sensitivity
 4.10.3. Power system unbalances
 4.10.4. Instrument transformer accuracy
4.11. Series-compensated line protection
 4.11.1. Voltage inversion affects directional discrimination
 4.11.2. Current inversion affects directional and differential discrimination
 4.11.3. Series capacitors affect distance measurement
 4.11.4. Directional comparison scheme security
 4.12.1. Faulted-phase identification
4.12.2. Single-pole open considerations
4.12.3. Simultaneous faults
4.13. Power swing blocking and out-of-step tripping
 4.13.1. Impedance-based power swing detection
 4.13.2. Swing-center-voltage method for power swing detection
4.14. Thermal protection
4.15. Fault locating
 4.15.1. Single-ended methods
 4.15.2. Multiended method
4.16. References

5. Transformer protection and monitoring

 5.1. Introduction
 5.2. Innovations in transformer protection and monitoring
 5.3. Transformer differential protection
 5.3.1. Operation principle
 5.3.2. Current magnitude and phase-shift compensation
 5.3.3. Compensation for zero-sequence sources
 5.3.4. Differential current caused by magnetizing inrush, overexcitation, and CT saturation
 5.3.5. Discriminating internal faults from inrush and overexcitation conditions
 5.3.6. Microprocessor-based transformer differential elements
 5.4. Restricted earth fault protection
 5.4.1. Traditional restricted earth fault protection
 5.4.2. Microprocessor-based relays improve restricted earth fault protection
 5.5. Transformer overexcitation protection
 5.6. Transformer overcurrent protection
 5.6.1. Transformer through-fault capability curves
 5.6.2. Transformer overcurrent relay protection
 5.7. Transformer sudden-pressure and gas-accumulation protection
 5.7.1. Sudden-pressure protection
 5.7.2. Gas-accumulation protection
 5.8. Combined transformer and bus protection
 5.9. Redundancy considerations for transformer protection
 5.10. Transformer monitoring
 5.10.1. Microprocessor-based IEDs perform transformer monitoring functions
 5.10.2. Transformer thermal model
 5.10.3. Insulation aging
 5.10.4. Through-fault monitoring
 5.10.5. Effect of through faults in transformer loss-of-life
 5.10.6. Integration of nonelectrical monitoring devices
 5.11. References

6. Bus and breaker-failure protection

 6.1. Introduction
 6.2. Modern solutions for bus protection
 6.3. Bus arrangements
 6.4. Bus protection schemes
6.4.1. Differential overcurrent protection
6.4.2. High-impedance differential protection
6.4.3. Percentage differential protection
6.4.4. Partial differential protection
6.4.5. Zone-interlocked protection
6.5. Breaker-failure protection
6.5.1. Impact of breaker-failure protection on power system stability
6.5.2. General considerations
6.5.3. Basic breaker-failure protection scheme
6.5.4. Breaker-failure protection scheme with consistent delay
6.5.5. Fast open-phase detectors
6.5.6. Fast-reset breaker-failure protection scheme
6.5.7. Breaker-failure scheme with alternate initiation logic
6.5.8. Use different breaker-failure times for multiphase and single-phase-to-ground faults
6.5.9. Breaker-failure application in multifunction relays
6.5.10. Breaker-failure tripping
6.6. Integrated bus and breaker-failure protection
6.6.1. Protection zone selection
6.6.2. Bus differential and breaker-failure protection tripping
6.7. References

7. Generator protection and monitoring

7.1. Introduction
7.2. Modern multifunction generator relays
7.3. Stator fault protection
7.3.1. Phase fault protection
7.3.2. Turn-to-turn fault protection
7.3.3. Ground fault protection
7.4. Rotor fault protection
7.5. Abnormal operation protection
7.5.1. Stator thermal protection
7.5.2. Field thermal protection
7.5.3. Current unbalance protection
7.5.4. Loss-of-field protection
7.5.5. Motoring protection
7.5.6. Overexcitation protection
7.5.7. Overvoltage and undervoltage protection
7.5.8. Abnormal frequency protection
7.5.9. Loss-of-synchronism protection
7.5.10. Inadvertent energization protection
7.5.11. Backup protection
7.6. Synchronism-checking and auto-synchronizing elements
7.7. P-Q plane based generator monitoring
7.8. SEL-300G relay application solutions
7.9. References

8. Wide-area protection, control, and monitoring
8.1. Introduction
8.2. Assessing substation state and topology
 8.2.1. Topology processor
 8.2.2. Current processor
 8.2.3. Voltage processor
8.3. Determining power system state
 8.3.1. Traditional state estimation
 8.3.2. Synchrophasor-based state determination
 8.3.3. Remote measurement supervision
8.4. Detecting power system inter-area oscillations
 8.4.1. Signal modal representation
 8.4.2. Damping ratio
 8.4.3. Signal-to-noise ratio
 8.4.4. Identifying inter-area oscillation modes
 8.4.5. Modal-analysis-based system integrity protection system
8.5. Black-start validation and paralleling of islanded generators with a large system
8.6. Applying synchrophasors to predict voltage instability
8.7. Automatic generator shedding using synchrophasor angle measurements
8.8. Use synchrophasors for backup transmission line protection
 8.8.1. Faulted-phase identification
 8.8.2. Negative-sequence and zero-sequence current differential elements
 8.8.3. Protection element performance
8.9. Distributed bus differential protection
 8.9.1. Protection zone selection
 8.9.2. Current differential element
 8.9.3. Application example of bus differential protection
8.10. Power-swing and out-of-step detection using synchrophasors
 8.10.1. Power swing detection
 8.10.2. Out-of-step detection
 8.10.3. Predictive out-of-step tripping
 8.10.4. System integrity protection system for two-area power systems
8.11. Synchrophasor-based islanding detection
8.12. System integrity protection system using MIRRORED BITS communications
8.13. Load shedding to prevent voltage collapse
8.14. References

9. Power system communications

9.1. Introduction
9.2. Communications system overview
 9.2.1. Pilot protection
 9.2.2. Substation and distribution automation
 9.2.3. Wide-area protection and control
 9.2.4. SCADA and EMS
 9.2.5. Security
 9.2.6. Engineering access and maintenance
 9.2.7. Example installation
9.3. Communications channels
 9.3.1. Channel capacity
 9.3.2. Channel reliability
9.3.3. Channel availability
9.3.4. Propagation delay

9.4. Fiber-optic-based communication
 9.4.1. Optical fiber types and characteristics
 9.4.2. Fiber-optic connectors and transceivers
 9.4.3. Dedicated fiber-optic channels
 9.4.4. Shared fiber-optic channels

9.5. Wireless systems
 9.5.1. Microwave
 9.5.2. Narrow-band VHF/UHF radio
 9.5.3. Spread-spectrum radio

9.6. Modern communication-based protection
 9.6.1. Communication-based protection schemes
 9.6.2. Improving the reliability of communication-based protection
 9.6.3. Communications standards
 9.6.4. Environmental and performance standards

9.7. MIRRORED BITS communications
 9.7.1. Description
 9.7.2. Security
 9.7.3. Dependability
 9.7.4. Channel performance monitoring
 9.7.5. Implementation example
 9.7.6. Logic processor
 9.7.7. MIRRORED BITS tester

9.8. Ethernet-based communication
 9.8.1. Ethernet port speed and fiber-optic interface
 9.8.2. Full-duplex operation and collision-free environment
 9.8.3. IEEE 802.3x flow control
 9.8.4. Priority queuing and virtual LAN support
 9.8.5. Loss-of-link management
 9.8.6. Remote monitoring, port mirroring, and diagnostics
 9.8.7. LAN-based network protocols
 9.8.8. Ethernet-based protection message standards
 9.8.9. Ethernet-based SEL product portfolio
 9.8.10. Ethernet radio

9.9. Future trends

9.10. References

10. Information processing

10.1. Introduction
10.2. Operations technology and information technology
10.3. Integrated IEDs networks
 10.3.1. Communication makes IEDs informed and organized
 10.3.2. Hierarchical levels of integrated IED networks
 10.3.3. Serial networks and Ethernet local-area networks
 10.3.4. Star, multidrop, and ring LAN configurations
 10.3.5. SEL Best Practice Methods support serial and Ethernet LANs
10.4. SEL specialized IEDs improve data processing
 10.4.1. Categories of power system data
 10.4.2. SEL IEDs provide superior performance
10.4.3. SEL IED communication surpasses that focused only on SCADA
10.4.4. SEL IEDs create situational awareness
10.4.5. SEL IEDs create apparatus data models
10.4.6. Migration to routable protocols reduces security and increases complexity

10.5. SEL increases LAN functionality
10.5.1. SEL Best Practices based on scientific measures
10.5.2. Different networks require different information processors
10.5.3. Data processing
10.5.4. Automation
10.5.5. Network functions
10.5.6. Information notification and visualization
10.5.7. Other SEL advantages

10.6. Create best-in-class networks
10.6.1. Modern communications methods satisfy IED network tasks
10.6.2. SEL-8000 provides for new generation networks

10.7. Use IEC 61850 network evaluation methods
10.7.1. SEL designs for availability
10.7.2. SEL designs for performance

10.8. SEL IEDs monitor, decide, and act
10.8.1. Separate protection and automation
10.8.2. Automate with networked SEL IEDs
10.8.3. SEL versatility

10.9. References

11. Information security

11.1. Introduction
11.2. Important security tips
11.3. Attacker profile and motivation
 11.3.1. Advantages of electronic attack methods
 11.3.2. Groups that threaten the electric power infrastructure
11.4. Attack techniques and tools
 11.4.1. Network reconnaissance
 11.4.2. Active scanning
 11.4.3. Exploiting vulnerabilities
 11.4.4. Attack propagation
11.5. Prioritizing electronic security risks in the electric power industry
11.6. Defensive technologies and strategies
 11.6.1. Electronic attack barriers
 11.6.2. Defining the electronic security perimeter
 11.6.3. Limiting access to protected networks
 11.6.4. Implementing strong cryptographic link security
 11.6.5. Implementing strong, local electronic access controls in critical devices
 11.6.6. Securing personal computers
11.7. Detecting and responding to electronic attacks
11.8. References

12. Protection system reliability and testing

12.1. Introduction
12.2. Reliability concepts
 12.2.1. Definitions and measures
 12.2.2. Failure rates and patterns of failure
12.3. System reliability analysis methods
 12.3.1. Block diagram method
 12.3.2. Fault-tree analysis method
12.4. Improving availability
 12.4.1. Redundant protection systems
 12.4.2. Design considerations for redundant protection systems
 12.4.3. Aviation industry comparison
 12.4.4. Advantages of redundant protection configurations
 12.4.5. Effect of common-mode failures
12.5. Selecting reliable protective relays
 12.5.1. Designing products for quality and reliability
 12.5.2. Thoroughly testing products before release
 12.5.3. Manufacturing for reliability
 12.5.4. Using field data to improve product reliability
12.6. Relay testing and commissioning
 12.6.1. Microprocessor-based relay self-tests
 12.6.2. Additional microprocessor-based relay monitoring features
 12.6.3. Testing microprocessor-based relays
12.7. References

13. Substation protection, control, and monitoring system design

13.1. Introduction
13.2. Design objectives of substation protection, control, and monitoring systems
 13.2.1. Functional requirements
 13.2.2. Design objectives
 13.2.3. Benefits of system integration and automation
13.3. DC control power system requirements for substations
 13.3.1. Battery monitoring features built into SEL relays
 13.3.2. External battery monitoring systems
13.4. Protection system redundancy
13.5. DC logic circuit design
 13.5.1. Circuit layout
 13.5.2. DC system fault protection
 13.5.3. Tripping/closing circuit design
 13.5.4. Auxiliary relays
 13.5.5. Remote I/O modules
 13.5.6. Targeting considerations
 13.5.7. Manual control system design
 13.5.8. Using communications links for critical protection and control functions
13.6. AC sensing circuit design
 13.6.1. Circuit design
 13.6.2. Power system protection circuits
 13.6.3. Metering circuits
 13.6.4. Transient recording
 13.6.5. Continuous monitoring of device measurements
13.7. Application of test switches
13.8. Design documentation
 13.8.1. Complete design documentation package
 13.8.2. DC elementary (schematic) diagrams
 13.8.3. Logic diagrams
 13.8.4. Standards

13.9. Panel and substation control enclosure design
 13.9.1. Purpose of a substation control enclosure
 13.9.2. Protection, control, and monitoring panel design
 13.9.3. Effects of integrated protection, control, and monitoring systems on enclosure design
 13.9.4. Substation control enclosure environmental system
 13.9.5. Eliminating the centralized control enclosure

13.10. References

14. Using power system information

14.1. Introduction
14.2. Asset management
14.3. SEL multifunction relays: a wealth of information
14.4. Upgrading protection, control, and monitoring equipment
14.5. Upgrading a substation using SEL multifunction relays
 14.5.1. Integrated system architecture
 14.5.2. System functionality
 14.5.3. Substation control enclosure
 14.5.4. Additional cost considerations
14.6. Data monitoring and analysis improve asset management
 14.6.1. Data flow
 14.6.2. Transformer monitoring
 14.6.3. Breaker monitoring
 14.6.4. Capacitor bank monitoring
 14.6.5. Battery monitoring
 14.6.6. Synchroscope for autosynchronizer
 14.6.7. Substation control enclosure and weather monitoring
 14.6.8. Applications
14.7. References

Index