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Using Thermal Limit Curves to Define 
Thermal Models of Induction Motors 

Stanley E. Zocholl and Gabriel Benmouyal, Schweitzer Engineering Laboratories, Inc. 

I.  INTRODUCTION 

IEEE Standard C37.96-2000, Guide for AC Motor 
Protection [1], recommends the use of overcurrent relays for 
overload and locked rotor protection. In these applications, 
setting the overcurrent inverse time-current characteristic to 
coordinate with the motor thermal limit curves provides 
protection. Because of the familiar use of overcurrent 
protection, little attention is paid to the nature of motor 
thermal limit curves and their relation to winding temperature 
in an induction motor. Yet, the limit curves are the 
characteristics of thermal models that enable microprocessor 
relays to continuously calculate and monitor motor 
temperature in real time. This paper uses induction motor 
thermal limit curves to define the thermal model and correlate 
motor current with temperature. The paper employs MATLAB 
simulations to compare the dynamics of the thermal model 
with that of an overcurrent implementation during cyclic 
overloads. 

II.  THERMAL LIMIT CURVES 

The thermal limit curves for a 400-horsepower, 3600-
rotations-per-minute, 440-volt induction motor are shown in 
Fig. 1. By definition, the curves give the time for current 
exceeding the service factor (SF) to raise the initial load 
temperature to an overload temperature that requires the motor 
to be disconnected. The SF in this case is 1.15. The 
manufacturer has specified the initial temperature for a set of 
“hot” and “cold” overload and locked rotor curves. 

 

Fig. 1. Hot and Cold Limit Curves for a 400-Horsepower Motor, SF = 1.15 

The initial motor temperature values are marked on each 
curve. The curves are presented in accordance with guidelines 
in IEEE Standard 620-1996, Guide for the Presentation of 
Thermal Limit Curves for Squirrel Cage Induction Machines 
[2]. Otherwise, the guide gives no information as to how the 
curves are constructed. However, we can conclude that each 
curve is a plot of a specific limiting temperature. 

III.  DEFINING THE THERMAL MODELS 

The basic equations found in thermal protection modeling 
are derived in the Annex. Equation (A21) gives us the form 
for overload thermal limit curves plotted in Fig. 1. The 
equations for the overload curves of Fig. 1 have the form: 
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where:  

Tth is the thermal time constant. 
I is the motor current in per unit (pu) of full load. 
ISF is the current at the service factor. 
IH is the current that raised the temperature to 130°C. 
IC is the current that raised the temperature to 114°C. 

If the curves obey a first order thermal process, we will be 
able to choose Tth, IH, and IC so that the equations fit the 
curves. Also, IH and IC must be in the ratio of the initial 
temperatures above ambient. A unique solution is obtained 
under the necessary constraint that: 
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The fit is obtained by satisfying simultaneous equations (4) 
where the equations have been solved for the service factor 
SF2. The curve fitting procedure is as follows: 

1. Choose a current and read the corresponding time 
points from the hot (130°C) and the cold (114°C) 
overload curves in Fig. 1. Enter the current and time 
values in (4). For example, at 2 per unit current, the 
hot and cold times are tH-CURVE = 223 seconds and  
tC-CURVE = 279 seconds, respectively. 
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2. Choose the Tth and IH so that equations (4) equal the 
service factor. 

3. Cut and try to refine the values. For example, when  
Tth = 1370 seconds and IH = 0.92 per unit, both 
equations equal 1.152 = 1.322. 

4. Check the result at other points on the curve. Curve 
values are shown in Table I. 
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TABLE I 
THERMAL LIMIT CURVE CHECKPOINTS 

I 
(pu) 

tH-CURVE 
(s) 

tC-CURVE 
(s) 

Tth 
(s) 

IH
2 

(pu) 
IC

2 
(pu) 

ISF 
(pu) 

2.0 223 279 1370 0.846 0.717 1.15 

2.5 126 158 1370 0.846 0.717 1.15 

3.0 82 104 1370 0.846 0.717 1.15 

When the unique values for Tth, IH, and IC are used, (5) can 
be used to calculate any curve point with precision: 
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The equations in (5) are the solutions of a first order 
differential equation that we will use to implement the thermal 
model: 
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where:  

RTCT is the thermal time constant = 1370 seconds 
θ is temperature at t = 0 
RT is 1 

The time-discrete form of (6) can be written as: 
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Solving for θn gives the time-discrete form of the 
differential equation: 
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Equation (7) is the algorithm that enables a microprocessor 
relay to continuously calculate motor temperature. The 
temperature is then compared to predetermined trip and alarm 
thresholds to provide thermal protection under any condition 
of operation. 

A.  Thermal Versus Overcurrent Model 

It is instructive to compare response of the thermal model 
to an overcurrent model of a thermal limit curve. The 
overcurrent model is implemented by integrating the 
reciprocal of the hot thermal limit curve as specified in 
Equation 3 of the IEEE Standard C37.112-1996 [3]. The 
incremental equations for this process are: 
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For I > 1.15: 
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For I ≤ 1.15: 
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Equation (9) is used to calculate the response of the 
overcurrent relay above the pickup current. Equation (8) is the 
time-current characteristic. θn and θn-1 are consecutive samples 
displaced by one time increment. Below pickup, the 
overcurrent relay resets exponentially using the thermal time 
constant to emulate the cooling of the motor. 

Fig. 2 shows the response of both models to a current 
below pickup. Whereas the overcurrent model has no 
response, the thermal model calculates the temperature that 
rises exponentially toward the steady-state temperature 
θ = 0.846. In Fig. 3, both models are subjected to a cyclic 
overload with the motor initially at 0.846 per unit of thermal 
capacity. 
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Fig. 2. Response of Models to a Current Less Than the Service Factor 
(I = 0.92) 
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Fig. 3. Response of the Models to a Cyclic Overload Current 

The cyclic current in Fig. 2 alternates between 1.4 and 
0.4 per unit current every 10 minutes. Note that the average of 
the currents squared and the rms current is: 
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The cyclic current is not an overload that raises the 
temperature to the trip value. Fig. 3 shows the cyclic 
temperature response of the thermal model reaches a 
1.06 average, or 80 percent of the trip value. 

The overcurrent relay model does not measure temperature 
and trips because it cannot account for thermal history. 

Fig. 4 shows that the overcurrent and the thermal model 
produce the same trip time when the motor is initially at the 
temperature specified for the hot thermal limit curve. Fig. 5 
shows the trip times when the motor is initially at the 
temperature specified for the cold thermal limit curve. The 
thermal model trips at the limiting temperature while the 
overcurrent trips at the hot curve time, independent of the 
initial temperature of the motor. 
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Fig. 4. Thermal and Overcurrent Model Response With Initial Temperature 
= 0.846 

T
he

rm
al

 C
ap

ac
ity

Trip Temperature (1.152)

Thermal Model

Overcurrent Trip Level

0.717

Overcurrent Model

8007006005004003002001000
0

0.5

1

1.5

Time in Seconds  

Fig. 5. Thermal and Overcurrent Model Response With Initial Temperature 
= 0.717 

B.  Correlation of Current With Temperature 

The initial temperatures for the “hot” and “cold” overload 
thermal limit curves are given as 130°C and 114°C, 
respectively. Also, the equations in (5) give the squares of the 
initial currents as 0.846 and 0.717 per unit, which can be read 
as per unit watts in the thermal model. Since temperature is 
proportional to current squared, we can write: 
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Where θ is the motor temperature rise above ambient and I 
is current in per unit, we can then write: 
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Where θ the steady-state temperature in degrees centigrade 
for a given per unit current, tabulated values are as shown in 
Table II. 

TABLE II 
CORRELATION OF CURRENT TO TEMPERATURE 

Motor Current (Per Unit) Temperature 

1.15 (Service Factor) 189°C 

0.92 130°C 

0.85 114°C 

0.0 25°C 

IV.  CONCLUSIONS 

1. In this paper, we introduced the basic principles and 
mathematical equations found in thermal protection 
modeling. 

2. We showed that the first order thermal equation fits 
the thermal limit curves of a 400-horsepower, 3600-
rotations-per-minute, 440-volt motor. We then used 
the hot and cold thermal model equations and the 
initial temperature data to derive the time constant of 
the thermal model. 
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3. We showed the hot thermal limit equation 
implemented as an overcurrent model. Using 
MATLAB simulations, we compared the dynamic 
responses of the overcurrent and thermal models. 

4. The simulations showed that the thermal model 
determines the true temperature caused by cyclic 
overload current, while the overcurrent model trips for 
cyclic currents that do not overheat the motor. 

5. Finally, we used the initial current for the hot and cold 
equations and the initial temperature data to correlate 
the motor current with temperature in degrees 
centigrade. 

V.  ANNEX: BASICS OF THERMAL MODELING 

This annex introduces the basic principles and 
mathematical equations found in thermal protection modeling 
by resolving a simple first order thermal process: the heating 
by a resistor of a vessel containing 1 liter of water. 

A.  A Simple Thermal System 

Let us assume a vessel contains 1 liter (or 1 kilogram) of 
water. The water is heated by a source of energy V. θA is the 
ambient temperature surrounding the vessel, and θw is the 
water temperature. We do not want the water to go beyond the 
boiling point, or 100 degrees centigrade. This temperature is 
defined as the maximum or hot-spot temperature θmax, and 
above this point, the voltage source will be disconnected by 
some protective device. 

r

I w

V



Losses

 

Fig. A1. A Simple Thermal System 

Let us define θ as the temperature of the water above 
ambient or: 

 w A      (A1) 

The rate of increase of the water temperature is provided by 
the equation expressing the thermal equilibrium. 
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In this equation, Cs is the specific heat of the water. It 
corresponds to the amount of energy that has to be supplied to 
1 kilogram of water to raise its temperature by 1 degree 
centigrade. Its value is 4.19E3 joules kg/°C. m, in kilograms, 
is the mass of the water. The losses or the quantity of heat 
transferred by the vessel to the surrounding environment can 
be expressed as: 
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Equation (A2) can be otherwise expressed as: 
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The mass m multiplied by the specific heat Cs is known as 
C, the thermal capacity of the system with units of joules/°C. 
It represents the amount of energy in joules required to raise 
the system temperature by 1 degree centigrade. 

The product of the thermal resistivity R and the thermal 
capacity C has a unit of seconds and represents the thermal 
time constant Tth of the system: 

 th sT R • m • C  (A6) 

The solution in the time domain for the temperature as a 
function of time and current is: 
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Remembering that θ is the temperature above ambient, we 
obtain for the expression of the water temperature: 
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Let us assume the system has some rated operating current 
Iop (which is otherwise called the load current in some 
applications). Then the water operating temperature is given 
by: 

 2
op op AI r • R     (A9) 

Whatever the current supplied to the vessel, there will 
always be an increase in the water temperature. The final 
water temperature for a constant current I is given by: 

 2
W A(0 ) I r • R      (A10) 

Equation (A5) is a first order differential equation and has 
an electrical equivalent: an RC circuit supplied by a current 
source. The power supplied to the water in the thermal process 
is equivalent to the current source supplying the RC circuit. 
The temperature in the thermal process is equivalent to the 
voltage across the capacitor in the RC circuit. The equivalence 
between the two systems is shown in Fig. A2. 

When supplied by a current step function, the temperature 
or voltage time response is shown in the same figure.  
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Fig. A2. Equivalence Between a Thermal System and a Parallel RC Circuit 

B.  The Equivalent Time-Current Curve 

If the water temperature must not go beyond a maximum 
temperature θmax, then the equation with the time as a variable 
is: 
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Solving for t gives the time-current equation: 
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Let us define the current Imax as the maximum current that 
can be supplied to the heating resistor without the water 
reaching maximum temperature as time goes to infinity. This 
maximum current would have to satisfy (A10) as in: 

 max max AI r • R     (A13) 

or: 

 2
max max AI r • R      (A14) 

Substituting θmax – θA in Equation (A12) gives the equation: 
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In (A15), we have finally expressed the time to reach the 
hot-spot temperature as a function of the current. Equation 
(A15) is also remarkable because we have removed all the 
temperature constants and replaced them with the maximum 
current Imax. 

Based on (A11) and (A15), the electrical equivalent circuit 
for the thermal process can be represented by the RC circuit, 
as shown in Fig. A2. 

 

Fig. A3. Electrical RC Equivalent of Thermal Process 

It should be noted that (A15) has no solution unless: 

 maxI I  (A16) 

Any current less than Imax will raise the water temperature 
to a steady temperature given by (A7). This temperature will 
be represented by a capacitor voltage in the equivalent circuit 
of Fig. A3(b). 

In (A15), the time to maximum temperature is expressed 
implicitly with reference to the ambient temperature or with 
the initial current equal to zero. Let us assume we want to 
develop an expression for the time to hot-spot temperature 
when the steady-state current is the operating current Iop. In 
(A17), the time to maximum temperature starts with the 
temperature at ambient (or with the current supplied at zero 
value). With the newer equation, the time to maximum 
temperature starts with the temperature at operating or the 
current at the load current. 

The time to reach the maximum temperature for some 
current I from the operating current (or temperature) is equal 
to the time to reach the maximum current from ambient with 
the same current minus the time to reach the operating 
temperature from ambient with the same current. 

We can compute θop from (A9): 

 2
op op AI r • R     (A17) 

The time to reach the operating temperature top from 
ambient for a current I can be computed from (A8) as: 
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from which we get top as: 
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Replacing θop by its value, we get: 
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Finally, the time from operating current or temperature is 
provided by: 
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This latter expression provides the time to reach the hot-
spot temperature for a current I when starting from the 
operating current or operating temperature. 

Normalizing the current with respect to the operating 
current, we get finally: 
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Where SF, or the service factor, is defined as the ratio of 
the maximum current over the operating current: 

 max

op

I
SF

I
  (A23) 

The electrical RC equivalent of the thermal process 
represented by (A22) is shown in Fig. A4. 

Note that the models in Fig. A4 are identical to the models 
in Fig. A3 except that the current is expressed in per unit. In 
(A21), time is measured starting from an initial operating 
temperature. This condition is represented in the model of 
Fig. A4 by a voltage across the capacitor equivalent to the 
initial operating temperature. 
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Fig. A 4. Electrical RC Equivalent of Thermal Process 

Starting from (A11), we can define the following invariant 
quantity: 
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Equation (A24) indicates that for any pair of points (I0, T0) 
and (I1, T1) on the time-current curve, we have the following 
identity: 

 
01

th th

tt

T T2 2
1 0Constant I r • R 1 e I r • R 1 e

   
     

   
   

 (A25) 

Equation (A25) can otherwise be expressed as: 
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Relations (A25) and (A26) determine if a given time-
current curve corresponds to a first order thermal model. 
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