The Impact of Synchronous Generators
Excitation Supply on Protection and Relays

Gabriel Benmouyal
Schweitzer Engineering Laboratories, Inc.

Published in the
SEL Journal of Reliable Power, Volume 3, Number 1, March 2012

Previously presented at the
62nd Annual Georgia Tech Protective Relaying Conference, May 2008

Previous revised edition released January 2012

Originally presented at the
34th Annual Western Protective Relay Conference, October 2007
Abstract—Synchronous generators have two types of operational limits: thermal and stability. These limits are commonly defined in the P-Q plane and, consequently, the point of operation of a generator should not lie beyond any of these limits. The functions that prevent the generator from infringing into the forbidden zones are known as limiters and are normally embedded in the generator automatic voltage regulator (AVR). The combination of these limiters and the nature of the AVR itself will have an impact on some generator protective functions like the loss-of-field (LOF) or out-of-step protection. The purpose of this paper is not to review generator protection principles, because this has been done extensively elsewhere, but rather to revisit the basic physical and engineering principles behind the interaction between a synchronous generator AVR and its associated limiters and some of the generator protective functions. We review the technology of the limiters embedded in a generator AVR. In LOF coordination studies, the steady-state stability limit (SSSL) used most often has been traditionally based on a generator system with a constant-voltage excitation (or manual SSSL). In this paper, we discuss the impact of the excitation system with an AVR or a power system stabilizer (PSS) on the generator stability limits. A new numerical technique is introduced to determine the stability limits of a generator system where the excitation supply could be regulated using either an AVR or an AVR supplemented by a PSS.

I. GENERATOR THERMAL AND STEADY-STATE STABILITY LIMITS

There are three types of thermal limits [1] [2] [3] [4] in a generator: the armature current limit that is directly related to the generator rated power, the field current limit, and the end core limit. The steady-state stability limit is a direct consequence of the power transfer equation between a generator and the network that it is supplying. These different limits are reviewed in the next section.

A. Generator Thermal Operational Limits

In Fig. 1, the three types of thermal limits found on a generator are represented. Assuming that the power is measured in per unit (pu) values, a half-circle with unit radius represents the generator theoretical maximum capability (GTMC). This limit is caused by the armature current ohmic losses and corresponds simply to the generator MVA rating.

The end core limit is a consequence of the end turn leakage flux existing in the end region of a generator. The end turn leakage flux enters and leaves in a direction perpendicular to the stator lamination. Eddy currents will then flow in the lamination and will be the cause of localized heating in the end region. In overexcited mode, the field current is high, and as a consequence, the retaining ring will get saturated so that the end flux leakage will be small. In the underexcited mode, the field current will be reduced and the flux caused by the armature current will add up to the flux produced by the field current. This will exacerbate the end region heating and will severely limit the generator output. The end core limit depends upon the turbine construction and geometry. The limitation could be particularly severe for gas turbines, yet could be nonexistent for hydro units as shown in Fig. 1; steam units would have a limiting characteristic in the middle [1].

The field and armature current limits are dependent upon the generator voltage. All three limits are dependent upon the generator cooling system. For hydrogen-cooled generators, the most tolerant limit will occur at the maximum coolant pressure (see Fig. 2).

Fig. 1. Generator operation thermal limits
The steady-state stability limit (SSSL) of a generator determines the region in the P-Q plane where the generator operation will be stable in a normal mode of operation. Normal mode of operation is defined here as a mode where only small and minor disturbances are occurring on the network, as opposed to major disturbances such as faults, significant addition of load, or loss of generation. The SSSL is used by protection engineers in some coordination studies and for the adjustment of the underexcitation limiter (UEL) function in the automatic voltage regulator (AVR) [1] [5].

The manual SSSL is derived for a generator system corresponding to Fig. 3, where the generator supplies its load to an infinite bus through a line with impedance X_e. The generator excitation is assumed to be supplied with a constant voltage. The power transfer equation for a salient-pole machine is provided in steady state by the conventional formula:

$$P = \frac{E_q E_s}{X_d + X_e} \sin \delta + \frac{E_s^2}{2(X_d + X_e)(X_q + X_e)} \sin 2\delta$$ \hspace{1cm} (1)

In this last equation, the angle δ is the angle between the generator internal voltage E_q and the infinite bus voltage E_s. It is a well-established principle that the generator stability limit is reached when the derivative of the real power P with respect to the angle δ becomes equal to zero.

$$\frac{\delta P}{\delta \delta} = \frac{E_q E_s \cos \delta + E_s^2}{X_d + X_e} \frac{X_d - X_q}{(X_d + X_e)(X_q + X_e)} \cos 2\delta = 0$$ \hspace{1cm} (2)

Trying to solve (2) will lead to nonlinear equations, and there is no algebraic equation for the SSSL. The problem can be simplified, however, by considering a round-rotor machine, for which X_d equals X_q equals the synchronous reactance X_e so that the power transfer equation becomes:

$$P = \frac{E_q E_s}{X_e} \sin \delta$$ \hspace{1cm} (3)

In this case, the stability limit is reached when the angle δ reaches the value of 90 degrees. A circle with a center and radius, as shown in Fig. 4, provides the stability limit under manual operation in the P-Q plane [1].

Fig. 5 in the per-unit P-Q plane provides a better picture of the practical issues associated with the manual SSSL. A half-circle of radius 1 and center (0,0) has been drawn and represents the already defined GTMC limit. The generator operating point will normally be inside the GTMC circle or on its circumference in the allowed region, so that the generator operation does not exceed the generator ratings.

Assuming the generator terminal voltage E_t to be 1.0 pu, the intersection of the manual SSSL curve with the imaginary axis is equal to $-1/X_d$. This indicates that for a generator with X_d greater than one, the manual SSSL will automatically infringe into the GTMC circle and the generator will become unstable when it becomes heavily underexcited. The intersection with the real axis is at point $1/\sqrt{(X_d+X_e)}$. This indicates that as the value of the external line impedance X_e increases, the manual SSSL becomes closer to the GTMC circle. With both X_d and X_e being equal to one, the SSSL and the GTMC circle coincide. There are high values of X_e for which the generator could not supply its rated power without becoming unstable: the manual SSSL infringes inside the GTMC limit.
II. THE SYNCHRONOUS GENERATOR EXCITATION SYSTEM

A. The Nature of the Generator Excitation

The primary function of a synchronous generator excitation system is to regulate the voltage at the generator output. In a synchronous machine, the rotating magnetic field necessary to induce voltage in the stator windings is produced by the dc current that circulates in the rotor or field winding. A synchronous generator excitation voltage is the voltage measured at the generator terminals when the load current is equal to zero. Its root-mean-square (rms) value is proportional to the current flowing in the rotor winding:

$$ E_f = \frac{\alpha L_{df} i_f}{\sqrt{2}} \tag{4} $$

This dc current flowing in the rotor winding is produced by the excitation system. At steady state, it is equal to the dc excitation voltage supplied to the rotor winding divided by the winding resistance:

$$ i_f = \frac{E_{id}}{r_f} \tag{5} $$

The field winding has a self-inductance L_{ff}. A fundamental characteristic of a synchronous generator is the direct-axis open-circuit transient time constant T_{do}', the ratio of the field self-inductance over its dc resistance:

$$ T_{do}' = \frac{L_{ff}}{r_f} \tag{6} $$

This time constant, which has the value of a few seconds, typically indicates that the voltage at the synchronous generator terminals cannot be changed instantaneously; in other words, the current in the field winding varies according to the field open-circuit time constant.

B. The Automatic Voltage Regulator

This paper focuses on present day excitation static systems, as shown in Fig. 7. In these systems, the input power for the static exciter is commonly derived from the machine terminals. A step-down transformer (excitation transformer PPT) feeds a three-phase controlled rectifier bridge that converts ac voltage into dc voltage. The dc output is connected to the machine field winding by brushes and collector rings.

In automatic mode, a voltage set point is introduced in the summing point of the AVR. This voltage set point is compared to the generator output voltage measurement and the comparison produces an error signal that adjusts the timing of the firing of the silicon-controlled rectifiers until the output voltage becomes equal to the voltage set point. In steady state, the generator output voltage is equal to the voltage set point. In manual mode, either the level of the generator output voltage or the field current level (as shown Fig. 7) is under the manual control of the operator. Although still applied on some old machines, manual control of the excitation systems is not recommended by bodies like the North American Electric Reliability Corporation (NERC), given the drawbacks and shortcomings that this mode of operation will entail.
Fig. 7. AVR principle with self-exciting generator

Fig. 8 represents the generic model of a static excitation as provided among others by [11]. Such models are intended as guidelines for stability studies. \(V_{\text{ref}} \) is the voltage setting, and \(V_c \) is the voltage measurement from the generator terminals. The difference between these two quantities constitutes the basic error signal. Provision is made for additional error signals at the AVR summing point. \(V_s \) is the error signal from a power system stabilizer (PSS). \(V_{UEL} \) is the error signal from an underexcitation limiter to be described later.

\[
V_{\text{ref}} \quad \frac{K_e}{1+sT_e} \quad E_{\text{FD}}
\]

Terminal voltage \(V_c \).

Fig. 8. Simplified representation of a static excitation system

In the excitation system of Fig. 8, an auction is taking place between some signals; in other words, a high-voltage (HV) gate will pick out the input signal that has the highest level when a low-voltage (LV) gate picks out the signal that has the smaller one. When used, this auctioneering action allows some signals to take control of the AVR loop. As an example, following the AVR summing point, if the error signal from the UEL circuit is larger than the error signal from the summing point, priority is given to the UEL signal that takes control of the AVR loop. The output of the AVR is the voltage supplied to the field circuit. This voltage is bounded and is of primary importance. The maximum voltage supplied by the excitation system is commonly called the AVR ceiling. In small signal analysis, as described later, a static AVR can simply be represented by a gain with a time constant as shown in Fig. 9.

III. PROTECTIVE LIMITERS EMBEDDED IN THE AVR

Generator thermal protective functions are embedded in the AVR by way of limiters. Using limiters means that these functions do not trip the generator, but keep it away from operating outside the boundaries indicated in Fig. 1. There are usually three limiters that can be implemented in the AVR: the underexcitation (or minimum) limiter (UEL or MEL), the overexcitation limiter (OEL), and the volt/hertz limiter (VHL). The UEL prevents the generator from operating below the end core limits shown in Fig. 1. It could also, depending upon which is the most constraining, prevent the generator from operating below the SSSL. The OEL prevents the generator from operating above the field limit of Fig. 1. The VHL prevents the generator from operating above a volt/hertz maximum threshold. The next section presents examples of means for implementing these different limiters.

A. The Underexcitation Limiter Implementation

1) The Control of the Generator Reactive Power

Consider the system in Fig. 10 representing a generator connected to an infinite bus through an impedance \(Z_e \). Assume that the infinite bus has unity voltage, the impedance is 15 percent and the generator voltage takes the three values 0.95, 1.0, and 1.05 pu. The circle diagram of Fig. 11 represents the relationship between the real and reactive power at the generator for all three cases. For each case, the circle has the next coordinates for the center and next radius value:

\[
\text{Center} = \left(0, \frac{E_i}{Z_e}\right) \quad \text{Radius} = \frac{E_i}{Z_e} \frac{E_s}{Z_e}\]

(7)

Fig. 9. IEEE type ST1A excitation system
Examining Fig. 11, one can see that when the generator voltage is above the system voltage, the generator produces positive volt-amperes reactive (VARs). When the generator voltage is equal to the system voltage, the generator has a power factor close to one (it does not produce any VARs at all). Finally, when the generator voltage is below the system voltage, the generator will absorb VARs.

This observation indicates that when a generator goes underexcited to the point that the negative VARs might get below the generator capability limit, the solution is to increase the generator output voltage until the absorbed VARs get above the limit. This is precisely what a UEL will do by producing a positive error signal that will be supplied to the AVR summing point when it requires the generator AVR to increase the output voltage.

Equation (9) is the equation of a straight line as shown in Fig. 13 and represents the UEL characteristic in the P-Q plane. When the generator operating point gets below the line segment, the UEL will produce a positive error that will be supplied to the AVR summing point. This positive error will, in turn, have the effect of increasing the voltage setting or AVR voltage reference so that the generator terminal voltage will also increase until the generator operating point goes above the UEL limit straight-line characteristic. Later, we will show how the exponent \((k_1 + k_2)\) allows having coordination with the loss of field (LOF) function in the P-Q plane that is not affected by the generator voltage.
When the field current goes above the pickup value, a positive signal through path “b” will be supplied to the integrator so that a negative error will be supplied to the AVR summing point. This negative error signal will reduce the field voltage E_f until the field current goes below the pickup value. For a step current increase above the pickup, [18] provides the time for the field current to start to be a limiter:

$$ t = \frac{A}{G_2 G_3 (I_{\text{rd}} - 1.05 I_{\text{rd rated}})} \quad (10) $$

Equation (10) is the equation of an inverse curve. The parameters can be adjusted so that the inverse characteristic will coordinate with the generator field capacity that is defined as a time-inverse current curve by standards [9].

![Fig. 14. Example of an OEL model](image)

C. Volt/Hertz Limiter Implementation

Fig. 15 represents an example of a VHL model [2] that will provide an error signal to the AVR summing point. This example assumes that a measurement of the generator terminal voltage E_t and frequency “freq” are available to the circuit. When the ratio of generator output voltage divided by the frequency goes above a maximum volt/hertz threshold, shown here as 1.07 pu, the difference is integrated and a negative signal is sent to the AVR summing point. The negative signal reduces the generator output voltage until the voltage to frequency ratio goes below the threshold. When the difference becomes negative, the integrator is reset to zero so that the error signal becomes null. Therefore, a VHL will change the generator output voltage but will have no effect on the generator frequency.

![Fig. 15. Example of a volt/hertz limiter model](image)

IV. THE IMPACT OF THE AVR ON THE GENERATOR SYSTEM SSSL

The only simple formula hitherto available to protection engineers for plotting the SSSL of a generator system is for the case of a generator with constant excitation. This limit type was assumed to be conservative enough that it could be applicable without any restriction to generator systems with AVR or PSS [5]. In the next paragraphs, we will introduce a new technique to derive the small-signal stability limit of a generator system with either an AVR or an AVR-PSS combination. Before presenting the new technique, we will introduce basic notions of small signal analysis (SSA) and small signal stability (SSS).

A. Fundamental Notions of Generator Small Signal Stability Using the Classical Generator Model

The simplest (and approximate) representation of a generator is the so-called classical model [2], consisting of a constant voltage source behind the generator transient direct axis reactance, as shown in Fig. 16.

![Fig. 16. Elementary power network with classical representation of generator](image)

In the per unit system, because the rotor speed is equal to one, the power P is equivalent to the electrical torque, and they are both provided by the classical power transfer equation:

$$ T_e = P = \left(\frac{E_s}{X_T}\right) \sin \delta_0 \quad (11) $$

A small increment of the electrical torque around the quiescent point of operation can be expressed as:

$$ \Delta T_e = \frac{\Delta T_e}{\delta_0} \Delta \delta = \left(\frac{E_s}{X_T}\right) \cos \delta_0 (\Delta \delta) \quad (12) $$

Equation (12) can be otherwise expressed as:

$$ \Delta T_{\text{sync}} = K_t \Delta \delta \quad (13) $$

with K_t equal to:

$$ K_t = \left(\frac{E_s}{X_T}\right) \cos \delta_0 \quad (14) $$

Because the electrical torque variation in (13) is proportional to the variation of the generator internal angle δ, this electrical torque type is called the synchronous torque. Only the synchronous torque is apparent with the simplistic classical model of a synchronous generator. In reality, another electrical torque exists in a machine that is proportional to the speed variation of the machine. This electrical torque is called the damping torque and can be expressed as:

$$ \Delta T_{\text{damp}} = K_D \Delta \omega \quad (15) $$

The total electrical torque produced by the synchronous machine is the sum of the synchronous and damping torques and is equal to:

$$ \Delta T_e = \Delta T_{\text{sync}} + \Delta T_{\text{damp}} = K_t \Delta \delta + K_D \Delta \omega \quad (16) $$
The dynamic equation of the machine rotor corresponds to the acceleration law of the rotating bodies and can be expressed as:

$$s \Delta \omega = \frac{1}{M} (\Delta T_m - \Delta T_{sync} - \Delta T_{damp})$$ \hspace{1cm} (17)

$$s \Delta \delta = \omega_0 \Delta \omega$$ \hspace{1cm} (18)

where:

ΔT_m is the variation of the mechanical power input to the generator in pu.

H is the inertia constant in seconds.

M is the inertia coefficient = 2H in seconds.

ω_0 is the base rotor electrical speed in radians per second (377 rad/s).

Given (13), (15), (17), and (18), the next block diagram shown in Fig. 18 represents the dynamics of the elementary power system of Fig. 16.

![Block diagram](image)

Using $\Delta \omega$ and $\Delta \delta$ as the state variables, we can model the elementary power system dynamics using state-space representation by the next matrix equation, as taught by modern control theory [2]:

$$\frac{d}{dt} \begin{bmatrix} \Delta \delta \\ \Delta \omega \end{bmatrix} = \begin{bmatrix} 0 & \omega_0 \\ \frac{K_i}{M} & -\frac{K_D}{M} \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \omega \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} \Delta T_m$$ \hspace{1cm} (19)

This system matrix equation in the state-space corresponds to the general form:

$$\dot{x} = Ax + Bu$$ \hspace{1cm} (20)

where:

x is the state vector.

A is the state matrix.

B is the control or input matrix.

u is the input or control vector.

For the purpose of establishing the system output vector y, two additional matrices, C and D, are commonly defined. They are:

$$y = Cx + Du$$ \hspace{1cm} (21)

In (21), C is defined as the output matrix and D is defined as a coefficient matrix. For the purpose of assessing the SSS of the system, we will discuss only the state matrix A.

The characteristic equation of the state matrix A is expressed by:

$$s^2 + \frac{K_D}{M} s + \frac{K_i \omega_0}{M} = 0$$ \hspace{1cm} (22)

By identification with the classical parameters of a second order system given as:

$$s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$$ \hspace{1cm} (23)

The undamped natural frequency ω_n and the damping ratio ζ are found to be:

$$\omega_n = \sqrt{\frac{K_i \omega_0}{M}} \text{ rad/s}$$ \hspace{1cm} (24)

$$\zeta = \frac{1}{2} \sqrt{\frac{K_D}{K_i M \omega_0}}$$ \hspace{1cm} (25)

The two characteristic equation roots or system are plotted in Fig. 18.

![Location of characteristic equation roots](image)

The roots of the characteristic equation are identical to the state matrix A eigenvalues. For the system to be stable, both roots of the characteristic equation have to lie in the left-hand side of the complex plane, as shown in Fig. 18. This implies that the undamped natural frequency ω_n and the damping factor ζ have to be positive. This, in turn, implies that the synchronizing and damping torque values have to be positive. If one of the two electrical torques becomes negative, the system will be unstable. The situation is illustrated in Table I, which displays the variation of the internal angle δ depending upon the sign of K_i and K_D and following an impulse change of 5 percent of the mechanical torque ΔT_m.

TABLE I
INTERNAL ANGLE RESPONSE TO A 5% IMPULSE OF MECHANICAL POWER ΔT_m

<table>
<thead>
<tr>
<th>K_0</th>
<th>$K_0 > 0$</th>
<th>$K_0 < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_i > 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_i < 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. SSS of a Generator With Constant Excitation Voltage

1) Advanced Generator Model

The classical model of generators has obvious limitations because it assumes that the flux linkage inside the generator is constant. We will use the more advanced model defined by DeMello and Concordia in [13] to study the impact of a solid-state modern excitation system on the stability of a synchronous salient-pole generator connected to an infinite bus through a reactance X_e. The model is based on the two-axis representation of a generator and is represented in Fig. 19.

The K parameters are identical to the ones used in [13] and are defined in Appendix A. The obvious change with respect to the classical model is that the damping torque is now produced by the generator physics.

The additional variables with respect to the classical model are:

- ΔE_i is the variation of the generator terminal voltage in pu.
- ΔE_{qd} is the variation of the field excitation voltage in pu.
- $\Delta E_{q}'$ is the flux variation in the direct axis.
- T_{do}' is the generator field open circuit time constant.

The generator block diagram model of Fig. 19 can be represented in the state space using three state variables, $\Delta \delta$, $\Delta \omega$, and $\Delta E_{q}'$, as expressed in the next matrix equation:

$$
\begin{align*}
\frac{d}{dt} \begin{bmatrix} \Delta \delta \\ \Delta \omega \\ \Delta E_{q}' \end{bmatrix} &= \begin{bmatrix} 0 & 377 & 0 \\ -K_r / M & 0 & -K_r / M \\ -1 / K_r T_{do} & 0 & -1 / K_r T_{do} \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \omega \\ \Delta E_{q}' \end{bmatrix} + \begin{bmatrix} 0 \\ 1 / M \\ 0 \end{bmatrix} \Delta T_n
\end{align*}
$$

C. SSS Limit Using the Damping and Synchronizing Torque Limits

In the model of Fig. 19, the sum of the torques is defined as the electrical torque opposing the mechanical torque. It can be expressed, based upon Fig. 19, as:

$$
\Delta T_e = \left(K_i - \frac{K_2 K_3 K_4}{1 + s K_5 T_{do}} \right) \Delta \delta(s)
$$

After a few manipulations, (27) can be expressed as:

$$
\Delta T_e = \left(K_i - \frac{K_2 K_3 K_4}{1 - s^2 K_5^2 T_{do}^2} \right) \Delta \delta(s) + \frac{K_2 K_3^2 K_4 T_{do}}{1 - s^2 K_5^2 T_{do}^2} s \Delta \delta(s)
$$

Obviously, the electrical torque contains a synchronizing component proportional to the angular deviation and a damping component proportional to the derivative of the angular deviation or speed. After s is given the value $j \omega$, the two component can be expressed as:

$$
\Delta T_{e_{\text{sync}}} = K_i - \frac{K_2 K_3 K_4}{1 + \omega^2 K_5^2 T_{do}^2}
$$

$$
\Delta T_{e_{\text{damp}}} = j \omega \frac{K_2 K_3^2 K_4 T_{do}}{1 + \omega^2 K_5^2 T_{do}^2}
$$

In [1], the SSS limit of the system in Fig. 19 is determined by the condition when both the synchronizing and damping torques become zero. The SSS limit is therefore determined in the P-Q plane by plotting the two curves when the two synchronizing and damping torques equal zero and then by determining the area where both torques are positive. In the same reference, the synchronizing torque limit is determined by solving the next equation when $\omega = 0$:

$$
\Delta T_{e_{\text{sync}}} \bigg|_{\omega=0} = K_i - K_2 K_3 K_4 = 0
$$

The damping torque limit is determined by solving the next equation when ω is equal to the undamped frequency corresponding to (24):

$$
\Delta T_{e_{\text{damp}}} \bigg|_{\omega = \frac{377 K_r}{M}} = j \omega \frac{K_2 K_3^2 K_4 T_{do}}{1 + \omega^2 K_5^2 T_{do}^2} \bigg|_{\omega = \frac{377 K_r}{M}} = 0
$$

The damping torque equation corresponding to (32) does not have a solution because the damping torque is always positive. Therefore, the stability of the system is determined by the synchronizing torque limit only corresponding to the solution of (31).
1) New Method for Determining the SSS Limits Using the Eigenvalues Real Part Sign

For an approach to the stability limit of the Fig. 19 model that is simpler than the two electrical torques limits, consider that the generator system is stable if the eigenvalues of the \(\mathbf{A} \) matrix have all their real parts as negative. The new method, dubbed “eigenvalues-based limit,” consists then in determining for each value of the real power \(P_i \) in the complex plane the corresponding value of imaginary power \(Q_i \) for which all the real parts of the \(\mathbf{A} \) matrix eigenvalues switch to negative (Fig. 20). Remember that for each pair of points \((P,Q)\), there are different values for the \(K \)’s parameters and therefore different eigenvalues for matrix \(\mathbf{A} \). After we scan a set of \(P \) values inside a chosen interval, the corresponding set of \(Q \) values as defined previously constitutes the SSS limit.

Fig. 20. Principles for determining eigenvalues-based limit

2) Equivalence Between the Manual SSSL and the Eigenvalues-Based SSS Limit

At this stage, we have described three methods to determine the stability limit of the generator system of Fig. 19 with constant excitation:

- The manual SSSL corresponding to a circle with characteristics given in Fig. 4.
- The synchronizing torque limit only (given that the damping torque is always positive), the equation of which is provided by (31).
- The newly defined eigenvalues-based limit.

In Fig. 21, the three stability limits obtained with the three methods are plotted for the system with constant excitation with the parameters shown. All three limits are practically identical. This demonstrates that the SSA approach, together with the eigenvalues-based limit, is viable for determining a generator system stability limit.

Fig. 21. Trio of stability limits for constant excitation generator system

D. SSS Limit of a Generator With Automatic Voltage Regulator

1) Generator Model With AVR

All the preceding analysis has been for a generator operated under constant field voltage. When an AVR is added to the system, an additional transfer function has to be added to the system, as shown in Fig. 22. It is assumed here that a self-excited generator with a simple static excitation system is being used with transfer function:

\[
\frac{\Delta E_{\text{el}}}{\Delta e_t} = \frac{K_e}{1 + sT_e}
\]

(33)

where:

\(K_e \) is the exciter gain.

\(T_e \) is the exciter time constant.

Fig. 22. Elementary power system block diagram with regulated solid-state excitation supply
The next matrix equation provides the representation of the generator system of Fig. 22 in the state-space domain:

\[
\frac{d}{dt} \begin{bmatrix} \Delta \delta \\ \Delta \omega \\ \Delta E_q \\ \Delta E_u \end{bmatrix} = \begin{bmatrix} 0 & 0 & 377 & 0 \\ -\frac{K_1}{T_m} & 0 & -\frac{K_2}{T_m} & 0 \\ 0 & -\frac{1}{(K_1 T_m)} & \frac{1}{T_m} & 0 \\ -\frac{(K_1 K_2)}{T_m} & 0 & -\frac{(K_1 K_2)}{T_m} -\frac{1}{T_m} & 0 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \omega \\ \Delta E_q \\ \Delta E_u \end{bmatrix}
\]

(34)

2) Stability Limits Using the Eigenvalues Method

Using the eigenvalues limit method, Fig. 23 shows the stability limits of the elementary power system when the generator has an AVR and the AVR gain is varied from zero to higher values. It is not a surprise that for an AVR gain of zero, the stability limit corresponds to the manual SSSL. As the gain increases, there is a limit to be given to the gain before the stability starts infringing inside the GTMC circle. It is a well-established principle that the AVR gain has to be limited to prevent the generator from falling into instability due to the lack of damping torque [2] [13]. Based on Fig.23, the AVR gain would have to be less than 25. Note here that the manual SSSL does not turn out to be the limit case as the gain increases. For high values of the AVR gain, the SSS limit will go above the manual SSSL and will start infringing inside the GTMC limit circle.

Appendix B lists the numerical program in the MATLAB® language [19] used for plotting the SSS limits in Fig. 23 and that can be used to plot further applications.

![Fig. 23. Impact of the AVR gain on generator stability limit](image)

E. SSS Limit of a Generator System With AVR and PSS

1) Generator Model With PSS

As shown in the previous paragraph, the AVR gain has to be limited to keep the damping torque to an acceptable value. Increasing the generator transient stability requires the highest possible AVR gain to produce the highest possible excitation voltage following a major disturbance. Transient stability is defined here as the ability of the generator to maintain synchronism when subjected to a severe transient disturbance such as a fault on an adjacent transmission line. To fulfill this requirement, power engineers have developed high-speed exciters equipped with power system stabilizers (PSS). Basically, a PSS derives an error signal based on the speed of the machine and injects this error signal into the summing node to increase the generator damping torque and this, in turn, enables an increase in the gain.

The generator system block diagram with the PSS added is shown in Fig. 24. The PSS transfer function consists of a gain, a high-pass filter, and a phase compensation filter. In reality, a PSS could entail more complex circuitry and does not necessarily measure the speed directly [2].

![Fig. 24. Linearized elementary power system with AVR and PSS](image)

The representation of the PSS in the state space domain imposes the addition of two state variables \(\Delta V_s \) and \(\Delta V_2 \), as shown in (35).

2) Stability Limit of a Generator With a PSS Using the Eigenvalues-Based Method

The SSS limit correction caused by the addition of a PSS has been studied using the eigenvalues limit method. Fig. 25 demonstrates the dramatic improvement of the system SSS limit because of the PSS. Without the PSS and with an AVR gain of 50, the stability limit is infringing into the GTMC circle, as shown in Fig. 25. With a gain \(K_e \) of 50 and the addition of the PSS, the stability limit has moved deeply to the left of the GTMC circle and well below the manual SSSL. For the case considered, the AVR gain could be set to 200 and even higher without compromising the normal operation of the generator. As for the previous analysis with an AVR only, with the addition of a PSS, the manual SSSL does not seem to constitute a “limit-case”: as the gain \(K_e \) increases, the SSS limit will begin infringing on the GTMC circle more and more deeply.
Fig. 26 shows the impact of the external impedance X_e increase of the SSS. With a gain (K_e) of 150, as X_e increases from 0.4 to 0.8 pu, notice that the SSS limit shrinks toward the left and eventually will infringe inside the GTMC limit circle for higher values of X_e. The same phenomenon has been observed with the manual SSSL of Fig. 5. Increases of the following factors contribute to the shrinking of the SSS limit: the AVR gain K_e, the external impedance X_e, or the AVR time-constant T_e. Reducing the following factors will lead to the same result: the generator voltage E_t, the field open-circuit time constant T'_d, or the machine inertia M. As already observed, a combination of factors could exist where the SSS limit could infringe deeply into the GTMC circle. The only common point between the two types of stability limits (manual SSSL and SSS limit) is that they both seem to be starting on the vertical axis on the point $(0, -1/X_d)$.

![Diagram showing impact of X_e on generator stability limit](image)
no longer true when some factors combine together to restrain the SSS limit (high AVR gain, weak system with a high external impedance X_e, etc.). Based on these considerations, there is certainly an actual requirement for simple techniques to establish a generator system stability limit irrespective of the excitation system operation mode.

B. Volt/Hertz Issues

As described previously, a VHL is normally implemented in the excitation system. When a volt/hertz maximum threshold is exceeded, this VHL will send a negative error signal to the AVR summation point until the generator voltage at the terminals goes back to an acceptable voltage level. The VHL does not preclude the implementation of volt/hertz protection on the generator and the step-up transformer. On the contrary, this backup protection is desirable and recommended [5]. Bear in mind that the error signal originating from the VHL can come into conflict with the error signal from the UEL in some particular situations. As an example, in an islanding situation or during light load with a high level of charging current, the generator could be driven into an underevolved state so that the UEL will send a positive error signal to the AVR summing point. This signal will increase the generator output voltage until the generator moves out of the forbidden underevolved zone. In doing so, the voltage could go to a level high enough that the volt/hertz threshold will be exceeded and the VHL will start sending a negative error signal to lower the voltage. The outcome of this conflicting situation could be an unstable oscillation in the generator output voltage.

C. Overvoltage Issues

The primary contribution of an AVR is to keep constant the generator output voltage under a normal mode of operation. Overvoltage could occur on a transient basis during network disturbances, however. At rated frequency, the volt/hertz protection constitutes a de-facto overvoltage protection; this is probably the reason why generator overvoltage protection is not widely used in North America. A classical situation exists where overvoltage could develop without being accompanied by overfluxing: the islanding of a hydro unit or its load rejection is normally followed by a voltage build up together with an acceleration of the machine. The only protection then against machine dielectric stress is a conventional definite-time delay or inverse-time overvoltage protection.

D. Loss-of-Field Protection Issues

The main issue with the LOF protection is to ensure that when the generator goes into the underevolved region, an infringement into the LOF characteristics will not occur, with the possible consequence of the generator tripping. Two types of coordination should be considered here: static (or steady state) and dynamic coordination. Steady-state coordination corresponds to the situation where there are no disturbances on the network. Dynamic coordination corresponds to the situation where there is a disturbance and when the UEL circuit might allow the generator operating point to infringe into the forbidden underevolved region on a transient or temporary basis.

1) Steady-State Coordination

This is accomplished by coordinating the LOF characteristics with the UEL. We will assume in the next example that the manual SSSL is more constraining that the end core limit as would happen with a hydro unit. This constitutes the worst-case scenario for the LOF protection. We limit the analysis to the conventional two-zone offset mho relay represented in Fig. 27. The coordination will be set in the P-Q plane. In the example, $X_d = 1.6, X'_d = 0.32,$ and $X_e = 0.18$.

In the R-X plane, the most important point with respect to the coordination is point “a” in Fig. 27 because it will map to the upper-most position in the P-Q plane. Recall that a point in the R-X plane will map into a point into the P-Q plane following the next transformation:

$$RX(r, x) \Rightarrow PQ\left(\frac{E_i^2 r}{r^2 + x^2}, \frac{E_i^2 x}{r^2 + x^2}\right)$$

(36)

Assume first that the generator voltage is $E_i = 1.0$. Point “a,” with coordinates $(0, -X_d - X_d/2)$ in the R-X plane, corresponds to the following point “A” in the P-Q plane:

$$RX\left(0, -\frac{X'_d}{2} - X_d\right) \Rightarrow PQ\left(0, -\frac{E_i^2}{X^d + X_d}\right) = PQ(0, -0.568)$$

(37)

The intersection of the manual SSSL with the vertical axis is:

$$PQ\left(0, -\frac{E_i^2}{X^d}\right) = PQ(0, -0.625)$$

(38)

As shown in Fig. 28, the intersection of the SSSL curve with the vertical axis will automatically be lower than point “A.” Assume that the UEL is implemented using a straight line, the equation of which is provided by (9) with the settings shown below and assuming that k_1 and k_2 have been set each to 1:

$$Q = P\frac{KUP}{KUQ} - E_i^2 = 0.2195 P - 0.483 E_i^2$$

(39)

The intersection of the UEL segment with the vertical axis is chosen to be 15 percent higher than point “A.” The intersection of the UEL segment with the horizontal axis is arbitrarily set to 2.2. Fig. 28 shows the overall coordination. Figs. 29 and 30 show how the coordination is maintained when the generator terminal voltage undergoes a maximum variation of 5 percent with respect to its nominal value. The moving UEL characteristic with the generator voltage E_i allows keeping coordination with the mapped LOF characteristic in P-Q plane that moves also in the same fashion with the voltage variation.
advanced or constant voltage excitation. Therefore, the main
task of the excitation system is to stabilize the power system, as compared to less
stable excitation systems. The dynamic coordination of the excitation system substantially improve the transient
stability of a power network and, in many cases, contribute to
the stability of the power system. The excitation system should be complete and
accurate before performing out-of-step simulations using programs like electromagnetic transients program (EMTP) or transient stability programs.

VI. CONCLUSIONS

1. Limiters embedded in generators AVR do not trip the unit
but prevent the generator from operating in operation zones that are thermally dangerous to the machine.

2. A UEL is normally embedded in the generator AVR and prevents the generator from operating on the forbidden underexcited region by sending an error signal to the AVR. This error signal in turn increases the AVR voltage reference so that ultimately the generator output voltage
will be increased. The consequence of a UEL taking action is therefore to increase the generator output voltage.

3. A VHL could be embedded in the generator AVR. When
called upon, it normally sends an error signal to the AVR, the consequence of which is to reduce the AVR voltage reference. This reduces the generator output voltage to bring the volt/hertz ratio back to the allowed limit. The VHL does not modify the generator speed or frequency value.

4. An UEL and a VHL oppose each other. One has a
tendency to increase the generator output voltage, the other one works to reduce it. Situations could develop
where the AVR will send opposite error signals, resulting in oscillations in the generator output voltage.

5. The limiters normally embedded in the AVR are not
effective in a manual mode of operation of a generator
excitation system. The corresponding protection will be
removed unless there is a backup independent of the AVR. The UEL will be lost during manual mode because it does not normally have a backup.

6. When coordinating the LOF characteristic with the UEL, remember that static or steady-state coordination is not a guarantee for proper dynamic coordination. A slow-acting UEL could lead to the infringement of the LOF characteristic during a network disturbance.

7. Conditions could develop where the stability limits of a generator with an AVR could be worse than the manual SSSL. In some situations, manual operation could never occur. The use of the manual SSSL in protection studies should be revisited and reassessed. Simple techniques to derive the stability limits of generator systems are needed and should be developed by standard bodies.

VII. APPENDIX A: K CONSTANTS CALCULATION PRINCIPLES

The generator model used in this paper is the same as the one in [13]. Assuming no amortisseur windings (which normally increase the damping effect), armature resistance neglected, no \(\frac{\mathrm{d}w}{\mathrm{d}t}\) terms in generator equations, and no saturation, the synchronous generator can be modeled using the following equations:

\[
\begin{align*}
i_a &= (E_q - E \cos \delta) \frac{(X_q + X_e)}{r_e} \frac{r_e}{r_e^2 + (X_e + X_q)^2} + E \sin \delta \frac{r_e}{r_e^2 + (X_e + X_q)^2} \\
i_q &= (E_q - E \cos \delta) \frac{r_e}{r_e^2 + (X_e + X_q)^2} + E \sin \delta \frac{(X'_e + X_q)}{r_e^2 + (X_e + X_q)^2} \\
E'_q &= X_{sd} I_{fd} - (X_d - X'_{sd}) I_d \\
T_{do} &\frac{\mathrm{d}E'_q}{\mathrm{d}t} = E_{fd} = X_{sd} I_{fd} \\
T_m - T_e &= M \left[\frac{\mathrm{d}(s\delta)}{\mathrm{d}t} \right].
\end{align*}
\]

For small variations of the three variables \(\Delta \epsilon\), \(\Delta E_q\), and \(\Delta \delta\), the following relations can be derived:

\[
\begin{align*}
\Delta \epsilon &= K_5 \Delta \delta + K_6 \Delta E_q \\
\Delta E_q &= \frac{K_4 \Delta \epsilon}{1 + sK_3 T_{do}'} - \frac{K_4 K_4 \Delta \delta}{1 + sK_3 T_{do}'} \\
\Delta T_e &= K_1 \Delta \delta + K_2 \Delta E_q.
\end{align*}
\]

For the point of operation defined by \(e_{to}\), \(P_{to}\), and \(Q_{to}\), the steady-state values \(e_{do}\), \(E_{qo}\), \(e_{do}\), \(E_{qo}\), \(i_{do}\), and \(i_{qo}\) can be calculated as:

\[
\begin{align*}
i_{po} &= \frac{P_{to}}{e_{to}} \\
i_{qo} &= \frac{Q_{to}}{e_{to}} \\
E_{qo} &= \sqrt{(e_{to} + I_{qo} X_q)^2 + (I_{po} X_q)^2} \\
E_o &= \sqrt{(e_{to} - I_{qo} X_q)^2 + (I_{po} X_q)^2} \\
\sin \delta_o &= \frac{e_{to} I_{po} (X_q + X_e)}{E_{qo} E_o} \\
\cos \delta_o &= \frac{e_{to} \left[e_{to} - I_{qo} (X_q - X_e) \right] - X_q X_q (I_{po}^2 + I_{qo}^2)}{E_{qo} E_o} \\
i_{qo} &= \frac{1}{E_{qo}} \left[e_{to} (e_{to} + I_{qo} X_q) - I_{qo} I_{po} X_q \right] \\
i_{do} &= \frac{1}{E_{qo}} \left[I_{po}^2 X_q + I_{po} (e_{to} + I_{qo} X_q) \right] \\
e_{qo} &= \frac{e_{to} (e_{to} + I_{qo} X_q)}{E_{qo}} \\
e_{do} &= I_{qo} X_q
\end{align*}
\]
The six constants, K_1 to K_6, in the previous three equation constants appearing in the model are defined as follows [13]:

$$K_1 = \frac{\Delta T_1}{\Delta \delta}$$
Ratio of the change in the electrical torque over the change in the rotor angle when the flux linkages in the d axis are constant.

$$K_2 = \frac{\Delta T_2}{\Delta E_{eq}}$$
Ratio of the change in the electrical torque over the change in the flux linkages in the d axis when the rotor angle is constant.

$$K_3 = \frac{X_d + X_e}{X_d + X_e}$$
Impedance factor. Formula shown when the external impedance is a pure reactance.

$$K_4 = \frac{X_d - X_q}{X_d + X_e}$$
Demagnetizing effect of a change in rotor angle.

$$K_5 = \frac{\Delta E}{\Delta \delta}$$
Ratio of change in terminal voltage over the change in E_{eq} for constant rotor angle.

$$K_6 = \frac{\Delta E}{\Delta \delta}$$
Ratio of change in terminal voltage over the change in E_{eq} for constant rotor angle.

The six constants, K_1 to K_6, can be computed mathematically as:

$$K_1 = \frac{X_q - X_d}{X_e + X_q} E_0 \sin \delta_0 + E_{eq} E_0 \cos \delta_0$$

$$K_2 = \frac{E_0 \sin \delta_0}{X_e + X_d}$$

$$K_3 = \frac{X_d + X_e}{X_d - X_e}$$

$$K_4 = \frac{X_d - X_q}{X_e + X_q} E_0 \sin \delta_0$$

$$K_5 = \frac{X_q \sin \delta_0}{X_e + X_q}$$

$$K_6 = \frac{X_e \sin \delta_0}{X_e + X_q}$$

VIII. APPENDIX B: ROUTINE TO GENERATE THE STABILITY LIMIT OF A REGULATED GENERATOR USING MATLAB LANGUAGE

The next listing in MATLAB language allows plotting the stability limit appearing in Fig. 23 with the AVR gain equal to 10. Adapting the routine to the PSS case is straightforward.

M=3;Td0=6;Ke=10;Te=0.05;
Xd=1.6;Xq=1.55;Xpd=0.32;Xe=0.4;re=0;et0=1.0;
m=1;k=0.02;Q=-2.1;FORW=1;

while (FORW==1) | ((FORW==0) & (k > 0.01));
while ((Q < 3) & (FORW==1)) | ((k > 0.01) & (FORW==0))
if FORW==1
Q=Q+0.01;
else
Q=Q-0.01;
end
Test=0;
while ((Test==0) & (Q < 3) & (FORW==1)) | ((Test==0) & (k > 0.01) & (FORW==0))
if FORW==1
Q=Q+0.01;
else
Q=Q-0.01;
end
et0=abs(et0);
Ip0=P/et0;
Iq0=Q/et0;
E0=sqrt((et0+Iq0*Xq)^2+(Ip0*Xq)^2);
Eq0=sqrt((et0-Ip0*re-Iq0*Xe)^2+(Ip0*Xe-Iq0*Xq)^2);
sind0=(et0*Ip0*(Xq-Xe)-re*Xq*(Ip0^2+Iq0^2)-re*Eq0*A)*((Xe+Xpd)*sin\delta_0-re*cos\delta_0);
cosd0=(1/(Eq0*E0))*\((et0+Iq0*Xq)^2+(Ip0*Xq)^2);
ed0=eq0*Xq;
eq0=et0*((et0+Iq0*Xq)/Eq0);
A=(\cos^2+Xe+Xpd)*(Xq+Xe);
K6=(eq/et0)*(1-Xpd*(Xe+Xq)/A)+(ed0/et0)*Xq*(re/A);
A3=[0 377 0 0;-K1/M 0 -K2/M 0;-K4/Td0 0 -1/(K3*Td0) 1/(Td0); -(Ke*K5)/Te 0 -Ke*K6/Te -1/Te];
H3=eig(A3);
x1=real(H3(1,1));
x2=real(H3(2,1));
x3=real(H3(3,1));
x4=real(H3(4,1));
Test= (x1 < 0) & (x2 < 0) & (x3 < 0) & (x4 < 0);
end
if FORW==1 & Q > 2.8
 m=m-2;
k=k-0.02;
else
 QQ(m)=Q;
end
m=m+1;
if FORW==1
 k=k+0.01;
else
 k=k-0.01;
end
end
FORW=0;
end
plot(PP,QQ)
grid

IX. REFERENCES

X. BIOGRAPHY

Gabriel Benmouyal, P.E., received his B.A.Sc. in Electrical Engineering and his M.A.Sc. in Control Engineering from Ecole Polytechnique, Université de Montréal, Canada, in 1968 and 1970, respectively. In 1969, he joined Hydro-Québec as an Instrumentation and Control Specialist. He worked on different projects in the field of substation control systems and dispatching centers. In 1978, he joined IREQ, where his main field of activity has been the application of microprocessors and digital techniques for substation and generating station control and protection systems. In 1997, he joined Schweitzer Engineering Laboratories, Inc., in the position of Principal Research Engineer. He is a registered professional engineer in the Province of Québec, an IEEE Senior Member, and he has served on the Power System Relaying Committee since May 1989. He holds over six patents and is the author or coauthor of several papers in the field of signal processing and power networks protection and control.