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Abstract—Broken rotor bars in induction motors can be 
dependably detected by analyzing the current signatures under 
sufficient motor load conditions. Detection becomes less 
dependable under light motor load conditions. There are also 
cases in which tolerable motor operating conditions generate 
current signatures similar to those of motors with broken rotor 
bars. These cases may present security concerns when the 
detection element is set to trip the motor and to send alarms. 

In this paper, we: 
 Show how broken rotor bars cause characteristic current 

signatures. 

 Show how to detect broken rotor bars with a zero-setting 
protection element, which uses the current signature 
method. 

 Use cases with different motor operating and fault 
conditions to analyze the performance of the zero-setting 
broken bar protection element. 

 Identify cases when the current signature method is 
dependable and cases when security is a concern. 

 Present solutions to address security concerns. 
 
Index Terms—Induction motor protection, broken rotor bars, 

squirrel cage rotor, induction motor relaying, condition 
monitoring. 

I.  INTRODUCTION 

Induction motors are an important part of many industrial 
processes. Identifying motor failures in the early stages is 
critical to improve process productivity and minimize motor 
damage. Technical personnel in charge of industrial sites 
require motor protection relays that are easy to commission 
and provide prompt alarming of motor failures. According to 
surveys by the Electric Power Research Institute (EPRI) (see 
Fig. 1) and IEEE, 5 percent of motor failures happen because 
of problems in the rotor cage [1] [2]. 

Early detection of a broken rotor bar minimizes motor 
damage and reduces repair costs. In some cases, the broken 
bar condition starts with a fracture at the junction between the 
rotor bar and the end ring as a result of thermal and 
mechanical stresses [3]. These stresses are more significant 
when starting motors with high-inertia loads. The bending of a 

fractured bar due to changes in temperature causes the bar to 
break. When one bar breaks, the adjacent bars carry currents 
greater than their design values, causing more damage if the 
broken bar condition is not promptly detected. Interbar 
currents that appear because of the broken bar affect the 
evolution of the fault in the rotor, causing damage in the 
laminations of the rotor core [3].  

 

Fig. 1. EPRI survey results indicate that 5 percent of motor faults are 
because of rotor cage faults. 

Motor current signature analysis (MCSA) is the most 
popular method to detect rotor cage faults [4] [5]. This method 
performs frequency spectrum analysis of the stator currents to 
determine the electromechanical conditions of the motor and 
the driven equipment. When one or more bars break, upper 
and lower sidebands appear at (1 ± 2s)fo, where s is the motor 
slip frequency and fo is the system frequency [6]. The 
magnitudes of these sidebands increase with the number of 
broken bars.  

In this paper, we describe a protection element that 
determines the number of broken bars using the relative 
magnitudes of the signals at the sideband frequencies (±2sfo) 
caused by the broken bars, with respect to the signal 
magnitude at the system frequency (fo). This normalization 
allows the algorithm to identify rotor failures independent of 
motor characteristics.  

Loads such as compressors, pumps, mills, and machines 
with gear boxes cause amplitude modulation in the stator 
currents with corresponding sideband frequencies at fo ± fr, 



 

 

fo ± 2fr, fo ± 3fr, and so on, where fr is the output frequency 
associated with the speed of rotation of the driven load [7]. In 
some applications, sideband frequencies at ±fr, ±2fr, and ±3fr 
may affect the magnitudes of the sidebands caused by broken 
bar conditions (±2sfo), making the proposed approach 
unsuitable for these applications. For this reason, the proposed 
solution also includes a Fourier transform function for 
analysis by a motor expert. 

We describe a protective relay with the following features 
for motor monitoring and protection: 

 A broken rotor bar detection element (BBDE) that 
uses MCSA for continuous monitoring and early 
detection of broken rotor bars. 

 A history report that includes the date and time of the 
BBDE operations along with the maximum sideband 
magnitude and associated frequency. These data help 
correlate the BBDE operations to other events in the 
industrial plant. 

 A Fourier transform function that calculates the 
frequency spectrum of the stator currents or voltages 
for motor diagnostics in cases when other sideband 
frequencies appear. 

The paper also presents the results of the BBDE 
performance for actual motors, including a 5.5 kW motor, a 
55 kW motor, and a 1.656 MW motor. 

II.  SIMULATIONS OF A MOTOR WITH BROKEN BARS 

A.  Induction Motor Model 

We use the multiple-coupled circuit model described in [8] 
to analyze the harmonic content of the stator currents when a 
motor has broken bars. The rotor cage portion of the model for 
a healthy motor consists of n identical and equally spaced 
current loops formed by two rotor bars and two end ring 
segments (see Fig. 2). Rb and Lb represent the resistance and 
leakage inductance of each bar. Re and Le represent the 
resistance and leakage inductance of each end ring segment 
between adjacent bars. This model does not consider 
saturation, parasitic currents, and interbar currents but still 
shows the effect of the broken bars on the stator currents. 

Fig. 3 shows the squirrel cage equivalent circuit for a motor 
with one broken bar, as described in [9] and [10]. This circuit 
eliminates the loop n and modifies the self-inductance and 
mutual inductance associated with the loop n – 1. We use a 
similar procedure to simulate two or three broken bars. 
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Fig. 2. Squirrel cage equivalent circuit for a healthy motor. 
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Fig. 3. Squirrel cage equivalent circuit for a motor with one broken bar. 

B.  Simulation Results 

We modeled a motor with one, two, and three broken bars 
to analyze the harmonic content of the stator currents for these 
operating conditions. Appendix A includes the technical data 
and parameters of the induction motor that we used in our 
model. 



 

 

    1)  Frequency Spectrum of the Phase Current of a Motor 
With Three Broken Bars 

We applied balanced voltages to a motor model that 
simulates three broken bars. As seen in Fig. 4, the phase 
current exhibits an amplitude modulation because of the 
broken bar condition. 
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Fig. 4. Motor A-phase current for three broken bars. 

Fig. 5 shows the frequency spectrum of the A-phase stator 
current when the motor has three broken bars. The magnitudes 
of the current components are normalized with respect to the 
magnitude of the fundamental current component. In this 
simulation, the motor operates at nominal load. As expected, 
the sidebands appear around the fundamental component 
(fo = 50 Hz) at frequencies (1 ± 2ks)fo, where k = 1, 2, 3, and 
so on. 

 

Fig. 5. Fundamental and sideband components for three broken bars. 

    2)  Relative Current Magnitudes of a Motor With One, Two, 
and Three Broken Bars 

Fig. 6 shows the relative magnitudes of the A-phase current 
components at the lower and upper sideband frequencies with 
respect to the magnitudes at fundamental frequency for one, 
two, and three broken bars. We observe that for these 
operating conditions, the relative magnitudes are a good 
indicator to determine the number of broken bars. 
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Fig. 6. Relative magnitudes of the phase current components at the 
sidebands with respect to the magnitude of the fundamental current 
component for one, two, and three broken bars. 

III.  A METHOD FOR DETECTING BROKEN BARS 

A.  Broken Bar Detection Element With Zero Settings 

The BBDE runs periodically regardless of the status of the 
motor. Every time the BBDE runs, the BBDE goes through 
three phases: initialization, data collection, and data 
processing, as Fig. 7 illustrates. 

 

Fig. 7. Broken rotor bar detection process. 

B.  Initialization Phase 

During the initialization phase, the relay records the initial 
magnitude of the alpha current, Iα, (1) and the initial system 
frequency. The relay uses these values as a reference to verify 
that the motor is operating under steady-state conditions 
during the data collection phase. 

 a b c2I (I I )
I

3
 

  (1) 



 

 

C.  Data Collection Phase 

The data collection phase starts after the element 
initialization phase ends. In this phase, the relay collects alpha 
current data, Iα, while monitoring that the motor operates 
under steady-state conditions. Fig. 8 shows the data collection 
logic. 
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Fig. 8. Alpha current data collection. 

The BBDE samples the motor currents and computes Iα as 
shown in Fig. 8. Iα is then squared to move the broken bar 
frequency components from (1 + 2s)fo Hz and (1 – 2s)fo Hz to 
2s Hz, where s is the motor slip and fo is the power system 
frequency. In addition to decoupling the frequency of interest 
from the power system frequency, squaring the signal moves 
both sidebands into the same frequency, improving the 
signal-to-noise ratio (see Appendix B for details). The squared 
signal is then passed through a low-pass filter to allow for 
proper downsampling. Finally, the samples are stored in the 
memory of the relay for analysis in the data processing phase. 

While the relay is gathering data, it also monitors the 
frequency of the power system and the alpha current 
magnitude to ensure that the motor operates under steady-state 
conditions. 

D.  Data Processing Phase 

Fig. 9 shows the data processing logic. In the following 
discussion, the block numbers refer to the numbers circled in 
Fig. 9. 

 

Fig. 9. Data processing phase. 

    1)  Steady-State Verification (Block 1) 
If the motor was not operating under steady-state 

conditions while the data were gathered, the data are not 
processed further. 

    2)  Data Windowing (Block 2) 
In this block, every value in the current buffer is multiplied 

by the corresponding element in a Hamming window of the 
same length. The elements of the Hamming window are 
computed using: 

 
2 n

w(n) 0.54 0.46cos
N 1

     
 (2) 

where: 

n is the location in the window. 
N is the number of elements in the data window. 

Fig. 10 shows the Hamming window and its effect on the 
data. Fig. 11 shows the effect of the Hamming window on the 
Fourier transform of the data. Note that the spectrum of the 
windowed signal is closer to the ideal spectrum than the 
spectrum of the original signal without windowing is. 

 

Fig. 10. Effect of data windowing in the time domain. 

 

Fig. 11. Effect of data windowing in the frequency domain. 

    3)  Fast Fourier Transform (Block 3) 
This block computes the fast Fourier transform (FFT) of 

the samples on the Iα windowed data and then calculates the 



 

 

magnitude associated with each frequency component. Fig. 12 
shows the details of the data processing within the block. 

 

Fig. 12. Data flow in the FFT block. 

    4)  Magnitude Compensation (Block 4) 
This block compensates for the attenuation introduced by 

the low-pass filter in the data collection phase. The algorithm 
compensates the magnitudes of the frequency components 
between 0 and 7 Hz. The compensation factor for each 
frequency is obtained according to the low-pass filter 
attenuation at that frequency. 

    5)  Maximum Magnitude Determination (Block 5) 
This block takes two arrays as inputs. One of the arrays 

contains the frequencies to be studied. The second array 
contains the corresponding magnitudes. The algorithm first 
finds every local maximum and then returns the greatest 
maximum along with the associated frequency. If we let the 
array of magnitudes be M = m[1], m[2],…, m[k], then every 
m[i] that satisfies (3) is a local maximum. 

        m i 1 m i  and m i m i 1     (3) 

Equation (3) states that a point in the interval is a local 
maximum if it is greater than both the point to its left and the 
point to its right. Finally, the global maximum is the greatest 
of the local maximums. Fig. 13 shows a hypothetical 
frequency spectrum and identifies all the local maximums and 
the global maximum between 0 and 5 Hz. 

1 2 3 4 5

–50

–40

–30

–20

–10

0

Frequency (Hz)

Local Maximum○
Global Maximum

0 6
Frequency 

Limit  

Fig. 13. Local and global maximums. 

    6)  FFT-Based Steady-State Verification (Block 6) 
In this block, the algorithm first computes the average 

magnitude (MAG_AVG) of the frequency components. Then 
it verifies that the average magnitude is below the healthy 
motor threshold. The algorithm also checks that the difference 
between the maximum and the average magnitudes is greater 
than the threshold MAR_AVGth. This second check helps to 
distinguish between noisy signals and signals that contain a 
small number of frequency components, such as broken bar 
conditions. Fig. 14 shows the thresholds on the frequency 
spectrum of a motor running at 50 percent load with one 
broken bar. 

 

Fig. 14. Average magnitude and thresholds on the frequency spectrum of a 
motor running at 50 percent load with one broken bar. 

Fig. 15 shows the logic diagram of the FFT-based steady-
state detection function. 

 

Fig. 15. FFT-based steady-state detection function. 

In the logic in Fig. 15, HEALTHYth and MAR_AVGth are 
constants independent of the parameters of the protected 
motor. 

We obtained the thresholds shown in Fig. 14 by taking into 
account data from [3], [11], and [12]; simulation results from a 
5.5 kW and a 300 kW motor; and measurements from multiple 
industrial sites, including motors up to 1.656 MW.  

The threshold names give a clear indication of the status of 
industrial squirrel cage induction motors. For other types of 
induction motors, the thresholds may not apply directly, but 
they still give an indication of the status of the rotor. For 
example, on a wound rotor induction machine, we can obtain 
broken bar current signatures by adding series resistances to 



 

 

one phase of the rotor windings [13]. As the resistance 
introduced in the circuit grows, the magnitudes of the 
sidebands grow—possibly beyond the relay thresholds.  

Fig. 16 shows the frequency spectrum of the currents of a 
300 kW motor simulation (see Table I in Appendix A for the 
motor parameters). The magnitudes of the broken bar 
components of these simulations are lower than expected by 
the thresholds, but as the fault evolves from one to two and 
three bars, the algorithm clearly detects the fault. 

 

Fig. 16. Simulation of a 300 kW motor. 

We show data from rotor bar failures at two industrial 
motors (see Table II in Appendix A for the motor parameters). 

Fig. 17 shows the frequency spectrum of the currents of a 
55 kW motor with four broken bars. Note that the magnitude 
of the broken bar frequency component is well above the Two 
or More Broken Bars threshold. 

 

Fig. 17. 55 kW motor with four broken bars. 

Fig. 18 shows the frequency spectrum of a 1.656 MW 
motor. These measurements were obtained long before the 
motor was taken out of service, so there is no broken bar 
count. However, we include these data to show that the 
algorithm will also detect problems in larger machines. When 
the 1.656 MW motor was taken out of service, five broken 
bars were found. 
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Fig. 18. Broken bar frequency components on a 1.656 MW motor. 

    7)  Set Broken Bar Alarm Bits (Block 7) 
In this block, the relay compares the maximum magnitude 

to the thresholds corresponding to incipient bar failure, one 
broken bar, and two or more broken bars. Finally, the relay 
updates the associated relay bits according to their respective 
thresholds. 

    8)  Save Event (Block 8) 
If any of the broken bar alarm bits assert, the relay records 

the maximum magnitude and associated frequency. Because 
these records are short (see Fig. 19), the relay can store several 
weeks of data. 

    Date        Time      Frequency       Magnitude
        (Hz)             (dB)

  8/10/2011    3:32PM        2.0 –33.2
  8/10/2011    3:22PM        2.0 –33.2

        .
        .
        .

  6/10/2011    8:55AM        1.95 –39.6
  6/10/2011    8:45AM        1.95 –39.3

        .
        .
        .

  4/10/2011    4:43PM        2.1 –45.7
  4/10/2011    4:32PM        2.1 –45.6

 

Fig. 19. History of events. 

IV.  FOURIER TRANSFORM FUNCTION 

The Fourier transform function is designed to provide 
protection engineers with detailed data about the behavior of 



 

 

the motor. This function can be used to periodically collect 
motor status reports. Differences among historic reports can 
point to developing problems in the motor or the load. 
Comparing reports taken from a number of motors performing 
the same task can help to identify motor, load, and voltage 
supply problems. 

Fig. 20 shows a block diagram for the Fourier transform 
function. First, the user selects a data source (any of the phase 
voltages or currents can be analyzed). Once the data source is 
selected, the relay collects data, as shown in Fig. 21. Then the 
data are multiplied by a Hamming window of the same length, 
and the Fourier transform is computed. The relay compensates 
the magnitudes for the attenuation of the low-pass filter and 
corrects the frequency according to the actual sampling rate 
that is a multiple of the system frequency. 

 

Fig. 20. Fourier transform function. 

 

Fig. 21. Data collection for the Fourier transform function. 

Finally, the relay displays the frequencies and their 
associated magnitudes and phase angles on its console port. 
The Fourier report includes the frequency components from 
0 to 120 Hz. Fig. 22 shows the Fourier function output. 

Selected Channel: IA

Sample        Amps
number
1             86.97
2             47.07
3             –2.39
.
.
.

Frequency    Magnitude   Angle
  (Hz)         (dB)      (deg)
  0.00          0.00      0.0
  0.20        –73.23      0.0
  0.40        –81.04      0.1
  0.60        –80.61      0.1

 

Fig. 22. Fourier transform report. 

V.  DEPENDABILITY FOR MOTORS WITH LIGHT LOADS 

The BBDE needs to distinguish between the 0 Hz 
component and the broken bar component at twice the slip 
frequency. When the motor is lightly loaded, the slip 
frequency is smaller than at full load and leads to a smaller 

difference between the 0 Hz component and the broken bar 
component. The BBDE will not be able to distinguish the 
broken bar components when: 

 2s D  (4) 

where: 

s is the operating slip frequency of the motor. 
D is the minimum frequency difference at which we can 
distinguish between two frequency components. 

If two frequency components are separated by less than 
D Hz, the associated frequency spectrum shows a single 
frequency component. The coefficient D is determined by the 
data window length and the windowing function used. In the 
BBDE implementation, D is 0.3 Hz and the algorithm does 
not distinguish the broken bar components when the motor 
load results in slip frequencies smaller than 0.15 Hz. Fig. 23 
shows the minimum motor loading for which the BBDE will 
detect broken bars in three different motors. 

 

Fig. 23. The slip falls below the detection limit for motors with light load. 

VI.  EXPERIMENTAL RESULTS WITH ACTUAL  
MOTOR BROKEN BARS 

A.  Test Setup 

To test the BBDE, we used the setup shown in Fig. 24. 
Fig. 25 shows the connection diagram of the setup. The motor 
protected by the BBDE is coupled to another motor driven by 
a commercial torque-controlled variable-speed drive that acts 
as a variable load.  

 

Fig. 24. Motor and its load for broken bar testing. 



 

 

3

 

Fig. 25. Diagram of the test setup. 

Fig. 26 shows the rotors used to test the BBDE. Note the 
holes drilled to break the bars. From left to right, Fig. 26 
shows a healthy rotor and rotors with one, two, and three 
broken bars. 

 

Fig. 26. Healthy rotor and rotors with one, two, and three broken bars. 

B.  Broken Bar Test Cases 

These test cases show the typical broken bar behavior. As 
more bars break, the magnitudes of the sidebands grow, and as 
the load on the motor grows, the sideband components 
separate from the system frequency. 

Fig. 27 compares the current frequency spectrum of a 
healthy motor with those of motors with one, two, and three 
broken bars. All of the current frequency spectrums 
correspond to motors running at 50 percent of the rated load. 
Note that the peak magnitudes grow as the number of broken 
bars increases, as expected. 
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Fig. 27. The magnitudes of the sideband components grow with the number 
of broken bars. 

Fig. 28 shows the frequency spectrum of the current of a 
motor with two broken bars at different loading levels. When 
this motor is fully loaded, the peak magnitude is located at 
around 2 Hz. As the loading level falls to 75 percent, 
50 percent, and 25 percent, the frequency corresponding to the 
peak magnitude moves from 2 to 1.5 Hz, 1 Hz, and 0.5 Hz. 
When the motor is unloaded, the peak magnitude is not 
recognizable from the dc component of the spectrum at 0 Hz. 
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Fig. 28. The magnitude of the largest frequency component does not change 
with the motor load, but the frequency at which the maximum magnitude 
occurs does. 



 

 

To show that the model accurately represents broken bar 
faults, we ran these same five cases in the model. Fig. 29 
shows the frequency spectrum associated with the simulations. 
While the noise in the simulations is below –90 dB, the 
frequencies and magnitudes of the broken bar components 
closely match those presented in Fig. 28. 
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Fig. 29. Frequency spectrums corresponding to the simulation of a motor 
with two broken bars and different loading levels. 

C.  Security During Motor Starts 

Fig. 30 shows the frequency spectrum of the starting 
current of a healthy motor. For comparison, it also shows the 
spectrum of a healthy motor under steady-state conditions. 
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Fig. 30. Frequency spectrum during motor start and steady-state conditions. 

Note that the magnitudes of the frequency components of 
the motor starting currents are greater than the thresholds for 
motors with broken bars. However, this case causes no false 
alarms because this condition is reliably detected by the 
current magnitude verification and by the FFT-based steady-
state detection logic shown in Fig. 15. 

D.  Low-Frequency Voltage Oscillations 

Low-frequency voltage oscillations cause currents similar 
to those caused by broken bars. To test the BBDE when the 
supply voltage contains these oscillations, we included a 
second motor and drive set, as shown in Fig. 31. The two 
motors are fed by the same autotransformer. By using the 
oscillatory torque reference on Drive 2, we can cause 
mechanical load oscillations on motor M2. The load 
oscillations cause current oscillations through the 
autotransformer, which lead to voltage oscillations at M1, the 
motor protected by the BBDE. 

 

Fig. 31. Test setup to generate low-frequency voltage oscillations. 

Fig. 32 shows the frequency spectrum of the current of a 
motor operating with a voltage source with a 1.5 percent 
magnitude, 2 Hz ripple. For comparison, it also shows the 
spectrum of the currents of a motor running at 100 percent 
load with three broken bars and a clean voltage source. 
Because the two spectrums are very similar, the BBDE does 
not distinguish between one case and the other, yet there are 
several strategies to differentiate the two, including the 
following: 

 If all the motors connected to the same feeder show 
the same current spectrum, then the problem is likely 
an oscillation in the supply voltage. 

 Voltage measurements farther away from the motor 
and closer to the source will confirm the presence of 
low-frequency components on the supply voltage. 

 These low-frequency voltage oscillations may not be 
present in the system all the time. They typically 
appear when the system is heavily loaded or very 
lightly loaded. If the BBDE picks up only during those 
times, it is likely to pick up because of voltage 
oscillations. 
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Fig. 32. Load frequency voltage oscillations can appear as a broken bar 
condition. 

E.  Low-Frequency Load Oscillations 

Fig. 33 shows the frequency spectrum associated with a 
motor running a load that oscillates at 1 Hz. Note that the 
current signature is similar to that of a motor with three 
broken bars operating at 50 percent capacity. Load oscillations 
produced by an abnormal mechanical load condition 
(unbalance and misalignment), load characteristics (e.g., 
reciprocating loads), or a defective transmission generate a 
speed oscillation at the perturbation frequency (fl), which is 
also seen as sideband components at ±fl in the current 
spectrum [11] [14]. Thus, if the frequency of the speed 
oscillation is close to twice the slip frequency, as shown in 
Fig. 33, the BBDE will pick up for a nonbroken bar condition.  

In some cases, broken bar conditions can be separated from 
load oscillations through the analysis of sidebands at higher 
current harmonics [12] [15]. If two or more motors are 
performing the same task, the spectrums of the motors can be 
compared to quantify the effect of the load on the spectrum. 
Then a greater-than-normal frequency component may 
indicate a broken bar condition. 
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Fig. 33. Load oscillations can appear as a broken bar condition. 

VII.  CONCLUSION 

The broken bar detection element with zero settings, along 
with the event history and the Fourier transform function, 
allows us to detect broken rotor bars under a wide variety of 
motor conditions. The detection element identifies the most 
common broken bar cases. The event history shows when 
problems start and how they evolve. Specific cases, such as 
when the voltage contains low-frequency components or when 
the motor drives an oscillating load, still require expert 
analysis. For these cases, the Fourier transform function 
speeds up the measurement process because no extra 
measurement equipment needs to be connected to the motor. 



 

 

VIII.  APPENDIX A 

Table I shows the nameplate data and parameters of the 
5.5 kW three-phase motor used in the laboratory tests and 
computer simulations, along with the nameplate data and 
parameters of the 300 kW motor used in computer 
simulations. 

TABLE I 
MOTOR PARAMETERS 

Parameter 5.5 kW Motor 300 kW Motor 

Rated power 5.5 kW 300 kW 

Rated voltage 380 V 380/660 V 

Frequency 50 Hz 50 Hz 

Rated current 11.1 A 529/305 A 

Rated speed 1470 rpm 2970 rpm 

Power factor 0.85 0.90 

Rotor inertia 0.02 kgm2 0.9178 kgm2 

Number of poles 4 2 

Number of rotor bars 40 40 

Number of stator slots 48 48 

Stator winding 

18 turns per coil, 
2 coils per group, 

4 groups per 
phase, step 

1:10:12 

4:3:3:3:6:6 turns per coil, 
6 coils per group,  

2 groups per phase,  
step 1:14:16:18:20:22:24, 

shunt connection 

Skew 1 stator slot period 1 stator slot period 

Air gap 0.45 mm 1.8 mm 

Air gap average radius 75 mm 139.1 mm 

Stator length 110 mm 390 mm 

Stator resistance 1.12 Ω 12.6 mΩ 

Stator leakage 
inductance 

0.0028 H 1 μH 

Rotor bar resistance 32 μΩ 33 μΩ 

Rotor bar leakage 
inductance 0.28 μH 0.87 μH 

End ring segment 
resistance 1.56 μΩ 0.54 μΩ 

End ring segment  
leakage inductance 0.03 μH 0.03 μH 

Table II shows the nameplate data and number of rotor bars 
of the motors from Fig. 17 and Fig. 18. 

TABLE II 
PARAMETERS OF FIELD MOTORS 

Parameter 55 kW Motor 1.656 MW Motor 

Power 55 kW 1656 KW 

Voltage  380 V 2300 V 

Frequency 50 Hz 50 Hz 

Rated current 100 A 475 A 

Rated speed 1475 rpm 1488 rpm 

Power factor 0.88 0.91 

Number of rotor bars 46 76 

IX.  APPENDIX B 

This appendix shows how squaring the input signal 
improves the signal-to-noise ratio of the broken bar frequency 
component. To this end, we first show the effect of squaring a 
clean broken bar current signal. The clean broken bar current 
signal consists of a main component at the power system 
frequency and two sidebands of smaller magnitude at each 
side of the main frequency component. We then introduce 
noise to the signal by adding a single frequency component 
and showing that squaring the new signal attenuates the noise 
component with respect to the broken bar component.  

We begin by considering a clean broken bar current signal, 
given by: 
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  
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where: 

M is the magnitude of the main component. 
m is the magnitude of each of the sidebands. 
fo is the operating frequency. 
fd is the separation between the main frequency 
component and the two sidebands. 



 

 

The Fourier transform of s(t) is given by: 
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where: 

f is the independent variable. δ is the delta Dirac function. 
Fig. 34 shows F(s(t)). To find F(s(t)2), we use the 

convolution theorem, which states that: 

         2
F s t F s t *F s t  (7) 

The convolution theorem determines that the magnitude of 

the dc component of F(s(t)2) is 
2

2M
m

2
  and the magnitude 

of the frequency component at fd is Mm. There are also 
smaller frequency components at ±2fd. As shown in Fig. 34, 
the frequency component pattern around the dc component 
also appears around ±2fo. In this study, we are not concerned 
about these higher-frequency components because they are 
filtered out by the low-pass filter shown in Fig. 8. 
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Fig. 34. Full spectrum of the Fourier transform of s(t) and s(t)2. 

Now, we consider the signal: 

       o nŝ t s t mcos 2 f f t     (8) 

where the added term represents a noise component of the 
same magnitude as the sidebands in s(t). In this explanation, 

we use d
n

f
f

2
  because it leads to the largest noise 

components in the convolved spectrum. 

Convolving ŝ(t), we obtain two new frequency 

components: one at fn with magnitude 
2Mm m

2

    and one at 

(fd + fn) with magnitude 
2m

2
. We study the component at fn 

because it is greater than the (fd + fn) component. Then we 
define the signal-to-noise ratio as the magnitude of the broken 
bar component divided by the noise component. As shown in 
Fig. 35, for ŝ(t), both magnitudes are the same and the ratio is 
1. For ŝ2(t), on the other hand, the signal-to-noise ratio turns 

out to be 
2

Mm

Mm m
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. Fig. 35 shows that this ratio is greater 

than 1, or more generally: 
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which means that the ratio will be larger than 1 as long as the 
magnitudes of the noise and the sidebands are less than the 
magnitude of the central component. 
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Fig. 35. Effect of squaring a signal with a noise component. 
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