
Practical Applications of IEC 61131
in Modern Electrical Substations

Mark S. Weber
Schweitzer Engineering Laboratories, Inc.

Presented at the
14th Annual Western Power Delivery Automation Conference

Spokane, Washington
March 27–29, 2012

1

Practical Applications of IEC 61131 in
Modern Electrical Substations

Mark S. Weber, Schweitzer Engineering Laboratories, Inc.

Abstract—The open international standard IEC 61131
describes a powerful programming language that is quickly
gaining acceptance for modern electrical substations. Proprietary
logic solutions often have unique advantages. However, the new
open programming language offers benefits for broader
application and potential cross-platform use. The advantages
grow as the IEC 61131 programming language merges with open
industry standard protocols, such as IEC 61850 and DNP3. The
flexible programming interface enables logic solutions ranging in
complexity from simple I/O processing to more advanced,
deterministic high-speed automation and control.

This paper provides examples to illustrate basic programming
techniques. IEC 61131 logic processing examples are shown using
data types from IEC 61850 manufacturing message specification
(MMS), Generic Object-Oriented Substation Event (GOOSE),
and DNP3 protocols. Additionally, innovative IEC 61131 logic
solutions are shown that enhance secure access control of North
American Electric Reliability Corporation Critical
Infrastructure Protection (NERC CIP) critical cyberassets in any
electrical substation.

In this paper, IEC 61131 programming language performance
considerations and comparisons are provided and techniques are
shown to ensure deterministic control through task prioritization
and scheduling.

I. INTRODUCTION

The international standard IEC 61131, originally published
in 1993 and updated in 2003, establishes a widely accepted
guideline for uniform programming of programmable logic
controllers (PLCs) and embedded automation computers.
IEC 61131 programming is commonly applied to PLCs for
highly complex industrial automation systems.

In addition to industrial automation, the methods described
in the IEC 61131 standard are rapidly gaining acceptance as a
powerful programming language for modern electrical
utilities, water/wastewater, metals/mining, petrochemical, and
other mission-critical facilities and applications. Ambitious
industry effort toward system automation and wide-area
monitoring and control underscores the need for a common
programming language for modern protection, control, and
monitoring (PCM) applications. Compared to proprietary
logic solutions operating on specific products, the IEC 61131
methods offer benefits toward broader application and
potential cross-platform use.

The advantages grow if we effectively apply open
communications interfaces and standardized utility protocols,
such as those described in the IEC 61850 standard and DNP3,
to simplify data gathering for wide-area logic processing.
IEC 61131 programming enables a broad range of flexibility
easily scaled for simple I/O processing and easily extended to

manage the most advanced requirements for deterministic,
high-speed automation and control.

II. IEC 61131 FUNDAMENTALS AND DEFINITION OF TERMS

Part 3 of IEC 61131 (IEC 61131-3) defines both text-based
and graphical programming language standards [1], as
follows:

• Structured text (ST), text-based (example shown in
Fig. 1)

• Instruction list (IL), text-based
• Function block (FBD), graphical (example shown in

Fig. 2)
• Ladder diagram (LD), graphical (example shown in

Fig. 3)
Additionally, a sequential function chart (SFC) may be

used to graphically describe the parallel and sequential
execution of a combination of IEC 61131-3 programs,
functions, or function blocks.

Fig. 1. Example ST programming.

Fig. 2. Example continuous function chart (CFC) programming.

Fig. 3. Example LD programming.

This paper references the term program organizational unit
(POU), which is the IEC 61131 standard method of describing
a program, function, or function block.

A calling logic block has the ability to call, or activate, a
function. A function is a routine that a program or calling

2

logic block can call to perform repetitive tasks. Square root
(SQRT) is a good example of a standard function. A function
is called by a program, and the result is immediately processed
based on the pre-call variables provided by the program; the
return value is not retained by the function. Other example
numerical functions include sine (SIN), cosine (COS), tangent
(TAN), or logarithm (LOG). Example string functions may
include concat (CONCAT), find (FIND), insert (INSERT),
left (LEFT), right (RIGHT), length (LEN), and midstring
(MID).

IEC 61131 programmers may build their own customized
functions to simplify otherwise complex equations. For
example, consider the common requirement to calculate power
factor from substation intelligent electronic device (IED)
metering quantities. Typically, an equation similar to (1) is
used.

L1.MVar.instMag

L1_ PF : (COS(ATAN
L1.MWatt.instMag

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (1)

The power factor equation in (1) requires the use of
complex math functions, and the programmer must account
for potential divide-by-zero errors that may result from the
IEC 61131 compiler under certain conditions.

By developing a customized function within the IEC 61131
logic engine, the equation may be reduced to a simple function
(which can later be called by a program) that only requires the
entry of the IED megaVAR and megawatt quantities, similar
to (2).

 ()L1_ PF : PF L1.MVar,L1.Mwatt= (2)

Note the complexity of the power factor calculation.
Handling of the divide by zero is now both accomplished and
hidden by the embedded function.

In addition to complex math calculations, functions are
useful for other purposes, such as real-time comparison of
analog quantities to confirm the health and validity of
measurements from multiple data sources. Voting functions
are easily implemented to accept input quantities only if the
values are confirmed to match multiple data sources within an
acceptable range. When measurement mismatches are
detected, alarm signals are easily generated to send an
immediate notification to maintenance personnel to indicate
that equipment is out of service or calibration is required.

A function block is a routine for which a program or
calling logic block has definitions for multiple instances to
perform specific tasks. Each instance is independent and must
have a unique name in a project. Fig. 4 shows example code to
instantiate a CFC function block. A function block retains
output variable status between processing intervals. Function
blocks typically do not directly access and act on global
system variables. An example of a function block is a timer
block (TON). A TON is a calculation value that must be
retained between each processing cycle to ensure POUs
operating in parallel properly read the present status of the
timer variable. Each function block includes a logic input pin
to determine the reset condition.

Fig. 4. Declaring an instance of a function block.

A program has the most capability or the highest order of
functionality in an IEC 61131 system given its ability to read
and write I/O and system variables and call functions or
function blocks. Programs can be standalone units. They
contain logic to perform a single task, perform multiple tasks,
or invoke functions and function blocks.

III. LOGIC PROCESSING IN MODERN UTILITY SUBSTATIONS

Many conventional, hardware-centric, PLC-based
automation systems depend on architectures with highly
concentrated hard-wired I/O. Logic functions may simply read
and compare the present value of these points at any instant in
time to make logical comparisons. Regardless of the speed of
reading the I/O, the data within the logic functions are
considered coherent because they are detected as part of the
same read function and are considered to be detected at the
same instant in time. Because the points are monitored in real
time, data latency when reading point status can often be
ignored. While this design approach may appear to simplify
logic programming, due to the practical limits of I/O wiring
distances, this approach complicates the administration of
safe, cohesive wide-area controls for geographically
distributed systems. The cost and complexity of these copper
terminations force designs to rely only on the data locally
terminated and then process data to be sent to other locations
via control messaging. This additional step reduces the
amount, type, and speed of data to be distributed among PLCs.
Information simultaneously presented to the programming
interface is actually detected, calculated, and received via
digital communications at unrelated times. During this
continual asynchronous data acquisition, the PLC is constantly
attempting to represent the present state of the system.
However, this representation is never the actual state, but
rather it is the present state of the data in the most recent
responses to I/O reads, calculations, and message reception.
Also, this requires that systems depend on robust, secure
communications to transfer control signals between widely
dispersed locations.

When planning to automate a utility substation as a
mission-critical system example, we quickly recognize that
many modern substations lack the hard-wired I/O points
needed to support a conventional PLC system. We are left
with a choice—add extra wiring and PLC equipment needed
to gather the necessary I/O readings or determine the viability
of utilizing presently installed equipment via digital
messaging.

3

Many modern substations utilize microprocessor-based
PCM IEDs that are fully capable of reading and exchanging
the status of breakers, control switches, analog readings, and
calculated logic values. For the most advanced automation and
control systems, it is to our advantage to share the
measurements, calculations, and decisions from these devices
with other devices in the system and to do so without
additional costly wiring. A communications solution must
account for the inconsistency of data formatting that often
results from nonstandardized protocols, normalization of data
readings, latency of data reporting, quality and accuracy of
measurements, and confidence in time stamps.

Once the data are gathered from substation IEDs and
output values are calculated, we must ensure fast,
deterministic, and secure control signaling. Most importantly,
we must implement logic programming methods that meet or
exceed the performance characteristics of traditional hard-
wire-based automation systems. IEC 61131 programming
provides the tools, performance, and flexibility for this
purpose.

IV. NORMALIZE IED READINGS THROUGH DATA STRUCTURES

Substation IED data are often collected, aggregated, and
reformatted through an information processor, PLC, or remote
terminal unit (RTU) using a mix of protocols, such as those
described in IEC 61850, DNP3, Modbus®, or the native
protocols of IED manufacturers. While each protocol may
have its own distinct advantage, when attempting to use logic
to compare data tags with incompatible attributes, the
formatting inconsistency creates challenges. Therefore, not
only is the standardization of data formats important, it is also
essential that a nonmanufacturer-specific and internationally
recognized method be chosen for project functionality and
longevity. For this reason, IEC 61850 data type definitions
offer many advantages with complete definitions that include
all of the necessary attributes needed for substation
automation. IEC 61131 programming allows the creation of
data structures that match the IEC 61850 data model. The
following data types are easily embedded in an information
processor that utilizes IEC 61131 programming:

• Single-point status (SPS)
• Double-point status (DPS)
• Protection activation information (ACT)
• Activation information directional protection (ACD)
• Binary counter reading (BCR)
• Measured value (MV)
• Complex measured value (CMV)
• Integer status (INS)
• Controllable analog set point (APC)
• Controllable integer (INC)
• Binary controlled step position (BSC)
• Integer controlled step position (ISC)
• Modbus coil control (MDBC)
• DNP3 controllable single point (DNPC)
• String (STR)
• Time (TIM)

Once the data types are embedded and defined in the
information processor database, each protocol driver stores
individual data tags according to standardized rules. This
process of normalizing protocol data to be of the same format,
regardless of the data acquisition protocol used, through
standardized database structures simplifies subsequent logic
processing, data movement, and reporting that takes place
within the logic engine. When certain required attributes of the
data structure are not supported by a data acquisition method,
the information processor calculates and provides the missing
details.

For example, protocols such as those described within the
IEC 61850 standard and DNP3 include both status values and
time-stamp information for data tags. Therefore, when
properly configured, the entire data structure populated from
these two protocols may be considered coherent relative to the
IED-reporting capabilities and safely compared in the
IEC 61131 logic engine. Fig. 5 shows a suggested method of
mapping DNP3 data to an IEC 61850 MV data type.

Fig. 5. Mapping a DNP3 point value to an IEC 61131 data structure.

However, Modbus is a protocol that inherently lacks the
time-of-day information needed for the time-stamp attribute of
the IEC 61850 data structure. When reading Modbus values,
the information processor recognizes the missing time-of-day
attribute and fills in the time stamp from the high-accuracy
onboard system clock and appropriately marks the time
quality. This process allows Modbus, IEC 61850, and DNP3
to utilize equivalent data types to support simple data
movement between protocols.

If needed, IEC 61131 programming provides easy rejection
of values due to unacceptable data latency, time quality, or
data quality. Programmers applying the IEC 61131 standard
should properly account for time-stamp latency in their logic
functions.

4

By creating complete and standardized data structures
within the information processor, each protocol fills in the
available field as indicated from the IED. Table I shows a
suggested method of populating data structures given the
available attributes of popular utility protocols. The data
structure includes a protocol superset of all available fields,
primarily based on the IEC 61850 standard. For example, an
IEC 61850 measured value (MV) data type indicates an
IEEE signed 32-bit float value, thus nearly every 32-bit
reading from an IED, regardless of protocol, is stored in the
database as an MV data structure. Other formats can be
converted and stored as IEEE signed 32-bit float values. Other
standard data types are easily supported through IEC 61131
programming.

TABLE I
DATA ATTRIBUTES ASSIGNED BY PROTOCOLS

Data
Structure
Attribute

IEC 61850 DNP3 Modbus
Fast Message

Protocol

stVal
(Status value)

Protocol Protocol Protocol Protocol

quality_t
(Data quality)

Protocol Protocol Protocol Protocol

timeStamp_t Protocol Protocol
Information
processor

Protocol

timeQuality_t Protocol
Information
processor

Information
processor

Information
processor

Sharing data tags between protocols is greatly simplified
because the IEC 61131 programmer may then use basic copy
statements to exchange data values between functions,
programs, or devices. Additionally, large data blocks are
easily exchanged between devices through standard
communications protocols, such as IEC 61850 MMS,
IEC 61850 GOOSE, or DNP3, and the tables may include the
time stamp and data quality within each data tag.

Binary status and control tags are also stored using
IEC 61850 data structures and standardized for all protocols.
Similar to analog tags, these data structures are easily shared
among the various protocols, including high-speed protocols
such as IEC 61850 GOOSE and MIRRORED BITS

®
communications. Additionally, the IEC 61131 logic engine
supports multiple processing threads, priorities, and task
intervals to support execution of high-speed logic expressions
operating independent from lower-priority processing threads
and background functions. This separation of tasks guarantees
deterministic control for high-speed protocols in support of
teleprotection, interlocking, and high speed automation. These
automation applications include substation automation,
automatic system reconfiguration, fault restoration, fast bus
trip, load shedding, distribution automation, volt/VAR control,
dynamic feeder optimization, and automatic generator control.
High-speed processing rates ranging from 1 to 4 milliseconds
are typical for these critical automation tasks.

V. SIMPLIFY PROGRAMMING BY COMBINING IEC 61131 AND

IEC 61850 STRUCTURES

By designing the IEC 61131 programming interface to
accept standardized IEC 61850 data structures, the system is
designed to immediately process incoming data without
further analysis or tag manipulation. Because each structure
carries the stVal, time stamp, and quality, the user easily
passes the data tag through the system to another protocol or
optionally uses the internal logger to record the present value
and time stamp. The example shown in Fig. 6 illustrates how a
CMV data type served from an IEC 61850 device is easily
passed to the database with minimal analysis or manipulation
by the information processor.

Complex Measured
Value

Information
Processor

IEC 61850 MMS Client
CommunicationsIEC 61850 MMS

Server

Relay/IED

IEC 61131
Tag Structure

instCVal
mag
ang

q
t
db
zeroDb
rangeC

[DataType: CMV]

cVal
mag
ang

range

Fig. 6. IEC 61850 data structures transfer directly to IEC 61131 data tags.

Once the tags are normalized within the database, they are
easily transferred to another protocol, as shown in Fig. 7.

Information Processor
IEC 61131 Tag DatabaseIEC 61850 MMS

Server

Relay/IED

[MV: MWatts]
[DNP_MAP1
_Index_001]

instMag
mag

q
t
db
zeroDb
rangeC

range

instMag
mag

q
t

db
zeroDb
rangeC

range

SCADA Client 1

HMI 1

SCADA Client 2

DNP_Map1_Index_001 := BKR_1260_61850_MWatts

Fig. 7. Use simple IEC 61131 copy statements to easily transfer tag status to
multiple clients.

IEDs programmed using the IEC 61850 standard are
configured via Substation Configuration Language (SCL),
Configured IED Description (CID), or IED Capability
Description (ICD) file management. These files have a
uniform, standardized template defined by the IEC 61850

5

standard, and many IEDs actually accept and use the file
directly to configure in-service behavior. Using programming
methods in this paper, the information processor data,
regardless of the IED of origin, are mapped to IEC 61850 data
sets, which are defined and stored in a template file and
“pushed” to the remote IED. Also, once the CID and/or ICD
files are specified, the tag lists are easily imported and
interpreted by the IEC 61131-3 programming interface,
allowing offline and automated template-based data mapping
for supervisory control and data acquisition (SCADA),
distributed control system (DCS), human-machine interface
(HMI), and event notification. As shown in Fig. 8, a complete
library of data types is important to allow simple transfer of all
IEC 61850 device tags to the information processor database.

Fig. 8. Build IEC 61131 data structures to match any IEC 61850 data type.

VI. USE IEC 61131 PROGRAMMING FOR
DETERMINISTIC, HIGH-SPEED CONTROL

When installed on a real-time embedded operating system,
an IEC 61131 logic engine uses cyclic and scheduled high-
speed processing to ensure deterministic control.

In most instances, multiple processing threads are offered
to support user-configurable cycle times and thread priorities.
By properly configuring thread prioritization, automation
logic operates without compromise, while other functions
operate at a lower priority, giving the user flexibility to
specify primary and background processing threads. This
separation of tasks guarantees deterministic control for high-
speed protocols that are needed for substation automation,
including automatic system reconfiguration, fault restoration,
fast bus trip, load shedding, and automatic generator control.
High-speed processing rates ranging from 1 to 4 milliseconds
are typical for these critical automation tasks. The embedded
real-time operating system creates a deterministic logic

processing environment with little jitter and dramatically less
susceptibility to malware.

An event-driven operating system, such as the Microsoft®
Windows® operating system, allows preemption (or
interruption) of tasks by other processes determined by the
operating system to be of higher priority. An IEC 61131 logic
engine operating on an event-driven operating system is
susceptible to increased processing jitter as more processes are
added to the operating system. Unfortunately, programming of
another task, perhaps by another individual, may affect the
performance of high-priority, mission-critical tasks without
either designer knowing the problem exists.

VII. PORT ACCESS CONTROL USING IEC 61131

PROGRAMMING LOGIC

Advanced information processors offer built-in security
features with programmable functionality enabled through
IEC 61131 logic. To name a few options, detailed port
statistics and control elements may be monitored, including
online and offline indications, individual port enable and
disable, data traffic monitoring and parsing, and pass-through
connection enable.

In addition to centralized Lightweight Directory Access
Protocol (LDAP) user account authentication, the information
processor enables any combination of logic or control points
to allow and/or block transparent communication to critical
cyberassets, such as line protection relays. Fig. 9 shows a
common substation communications architecture with a need
for supervisory control of all transparent communications.
This type of access control ensures only authenticated and
proven active employees gain access to the substation IEDs
based on end-user-defined employee and activity rules, roles,
and responsibilities.

Fig. 9. Keep transparent port access restricted until control logic grants
authority (i.e., SCADA).

6

Fig. 10. Use a simple IEC 61131 logic expression to enable transparent communications to only one IED.

These security-based control tags may be controlled and
monitored using numerous methodologies to add another layer
of protection to engineering access connections. Fig. 10 shows
an example where a SCADA protocol sends control
commands to an IEC 61131 CFC block, allowing strict
supervision of all transparent communications to a selected
destination device. SCADA may keep the disconnect pin
asserted at all times until SCADA properly authenticates a
requesting user for access. This pin is used in logic as a
permissive to deny access to the communications channel
until the disconnect pin is deasserted.

Numerous IEC 61131 pickup and dropout timers and
latches are available that are often used to customize and
group communications diagnostics information. This is
another area where shared data structures simplify the
programming necessary to share this information with other
connections, such as SCADA.

VIII. USER ACCESS CONTROL THROUGH IEC 61131

PROGRAMMING LOGIC

Advanced IEC 61131 programs exploit extended
IEC 61131 programming functions found in the information
processor to monitor traffic on communications channels. A
commonly used case involves monitoring traffic on a port
connection for the purpose of detecting undesired access or
entry into an unacceptable access level.

When monitoring and detecting the entry into an undesired
access level to an IED, static feedback from the IED tells the
level of user access. For example, a command prompt may be
displayed differently for a Level 2 command line prompt
compared with a Level 1 prompt. In most cases, this prompt is
a static response from the IED and may not be altered by the
user. As a result, the fixed returned character strings are used
to monitor the user access level within an engineering access
connection.

Further, IEC 61131 programming can also trigger and
instruct the real-time traffic monitor to detect the unique IED
command prompts and take appropriate logic actions if
undesired entry is noted.

As shown in Fig. 11, we first define a trigger
Destination_RX_Message_1 in the access point traffic
monitor. In the access point router (APR), the destination
device is the outgoing connection, thus the protective relay.
Next, in Fig. 12, we define a Destination_TX message, which
is a transmitted message that will be sent once the undesired
prompt is detected.

Fig. 11. Add one Destination_RX message for monitoring the IED
command prompt.

Fig. 12. Add one Destination_TX_Message used for transmitting the control
message upon detection of undesired access.

7

Fig. 13. Add command prompt string and transmit string.

Fig. 14. Program IEC 61131 logic to transmit messages upon detection of Destination RX_Message_1.

As shown in Fig. 13, the STR variables are then
programmed based on the expected unique string
combinations and desired transmit message.

Fig. 14 shows the CFC logic that triggers the Destination
TX_Message_1 whenever the Destination RX_Message_1 is
received during any communication with the protective relay.

After downloading the IEC 61131 code to the information
processor, the logic engine continually monitors the
connection for a received character set matching =>>. Once
detected, the logic engine immediately transmits ACC<CR>
to the IED, which, in this case, forces the relay immediately to
Access Level 1. (Note that in this case, due to momentary
Level 2 access, the protective relay alarm contact momentarily
pulses, indicating unwanted intrusion.) Because the intruder
has no option to modify the command prompt in IEDs with
static feedback prompts, this IEC 61131 logic permanently
blocks Level 2 access from anyone entering through this
communications path.

IX. CONCLUSION

Standardized, nonproprietary IEC 61131 programming
simplifies project configurations for substation automation
needs. Based on common application requirements,
engineering teams may efficiently produce standardized
IEC 61131 automation libraries and streamline programming
procedures for potential repeat projects. The benefits from
reduced engineering costs, reduced training cost, and overall
increased productivity can be substantial.

With proper definition and utilization of data structures
within the embedded information processor, it is possible to
configure an integrated IEC 61131 logic engine to process
data tags and control commands deterministically at the
programmed task interval of the IEC 61131 logic engine.
Advanced embedded information processors often allow cycle
times at or below 4 milliseconds. This level of performance is
not achievable using an external, nonintegrated logic engine
because multiple processing intervals are necessary to read
and write logic variables and subsequently output control
commands.

8

High-speed, peer-to-peer protocols are critical for
maximizing the level of determinism possible through the use
of an IEC 61131 logic engine. By using IEC 61131
programming to trigger control commands via protocols such
as IEC 61850 GOOSE or MIRRORED BITS communications,
the outgoing control signal transmits within one processing
interval and is typically received by the remote device in less
than 10 milliseconds (4-millisecond processing interval at
each end).

Multithread IEC 61131 logic programming offers
additional potential and promotes further application
extensions. Multithread support typically includes adjustable
processing rates along with configurable thread priorities,
allowing optimal utilization of the information processor.
Multithread prioritization and IEC 61131 programming
flexibility offers significant performance benefits for modern
substation automation applications.

As demonstrated through examples in this paper,
IEC 61131 programming also offers flexible programming
options to enhance secure access control policies. Users may
combine powerful IEC 61131 logic controls with advanced
and integrated security functions to develop customized
solutions to fit their needs.

X. REFERENCE
[1] K.-H. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial

Automation Systems: Concepts and Programming Languages,
Requirements for Programming Systems, Decision-Making Aids,
2nd ed., Springer, 2010.

XI. BIOGRAPHY
Mark S. Weber received his AAS in Electronics Engineering Technology in
1985. In 1986, he joined Schweitzer Engineering Laboratories, Inc. (SEL),
where he specialized in testing digital protective relays and communications
equipment. He later moved to a product support role, providing applications
assistance and training to SEL customers. In 2006, he began a supervisory
role with SEL in the automation and integration engineering group, where he
focused on the design, specification, and application of SEL automation
products. Mr. Weber is presently the research and development manager for
automation controllers at SEL. He has authored and coauthored several
technical papers and application guides.

© 2012 by Schweitzer Engineering Laboratories, Inc.
All rights reserved.

20120224 • TP6560-01

	CoverPage_20150316
	6560_PracticalApplications_MW_20120224

