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Abstract—The open international standard IEC 61131 
describes a powerful programming language that is quickly 
gaining acceptance for modern electrical substations. Proprietary 
logic solutions often have unique advantages. However, the new 
open programming language offers benefits for broader 
application and potential cross-platform use. The advantages 
grow as the IEC 61131 programming language merges with open 
industry standard protocols, such as IEC 61850 and DNP3. The 
flexible programming interface enables logic solutions ranging in 
complexity from simple I/O processing to more advanced, 
deterministic high-speed automation and control. 

This paper provides examples to illustrate basic programming 
techniques. IEC 61131 logic processing examples are shown using 
data types from IEC 61850 manufacturing message specification 
(MMS), Generic Object-Oriented Substation Event (GOOSE), 
and DNP3 protocols. Additionally, innovative IEC 61131 logic 
solutions are shown that enhance secure access control of North 
American Electric Reliability Corporation Critical 
Infrastructure Protection (NERC CIP) critical cyberassets in any 
electrical substation. 

In this paper, IEC 61131 programming language performance 
considerations and comparisons are provided and techniques are 
shown to ensure deterministic control through task prioritization 
and scheduling. 

I.  INTRODUCTION 

The international standard IEC 61131, originally published 
in 1993 and updated in 2003, establishes a widely accepted 
guideline for uniform programming of programmable logic 
controllers (PLCs) and embedded automation computers. 
IEC 61131 programming is commonly applied to PLCs for 
highly complex industrial automation systems. 

In addition to industrial automation, the methods described 
in the IEC 61131 standard are rapidly gaining acceptance as a 
powerful programming language for modern electrical 
utilities, water/wastewater, metals/mining, petrochemical, and 
other mission-critical facilities and applications. Ambitious 
industry effort toward system automation and wide-area 
monitoring and control underscores the need for a common 
programming language for modern protection, control, and 
monitoring (PCM) applications. Compared to proprietary 
logic solutions operating on specific products, the IEC 61131 
methods offer benefits toward broader application and 
potential cross-platform use. 

The advantages grow if we effectively apply open 
communications interfaces and standardized utility protocols, 
such as those described in the IEC 61850 standard and DNP3, 
to simplify data gathering for wide-area logic processing. 
IEC 61131 programming enables a broad range of flexibility 
easily scaled for simple I/O processing and easily extended to 

manage the most advanced requirements for deterministic, 
high-speed automation and control. 

II.  IEC 61131 FUNDAMENTALS AND DEFINITION OF TERMS 

Part 3 of IEC 61131 (IEC 61131-3) defines both text-based 
and graphical programming language standards [1], as 
follows: 

• Structured text (ST), text-based (example shown in 
Fig. 1) 

• Instruction list (IL), text-based 
• Function block (FBD), graphical (example shown in 

Fig. 2) 
• Ladder diagram (LD), graphical (example shown in 

Fig. 3) 
Additionally, a sequential function chart (SFC) may be 

used to graphically describe the parallel and sequential 
execution of a combination of IEC 61131-3 programs, 
functions, or function blocks. 

 

Fig. 1. Example ST programming. 

 

Fig. 2. Example continuous function chart (CFC) programming. 

 

Fig. 3. Example LD programming. 

This paper references the term program organizational unit 
(POU), which is the IEC 61131 standard method of describing 
a program, function, or function block.  

A calling logic block has the ability to call, or activate, a 
function. A function is a routine that a program or calling 
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logic block can call to perform repetitive tasks. Square root 
(SQRT) is a good example of a standard function. A function 
is called by a program, and the result is immediately processed 
based on the pre-call variables provided by the program; the 
return value is not retained by the function. Other example 
numerical functions include sine (SIN), cosine (COS), tangent 
(TAN), or logarithm (LOG). Example string functions may 
include concat (CONCAT), find (FIND), insert (INSERT), 
left (LEFT), right (RIGHT), length (LEN), and midstring 
(MID). 

IEC 61131 programmers may build their own customized 
functions to simplify otherwise complex equations. For 
example, consider the common requirement to calculate power 
factor from substation intelligent electronic device (IED) 
metering quantities. Typically, an equation similar to (1) is 
used. 

 
L1.MVar.instMag

L1_ PF : (COS(ATAN
L1.MWatt.instMag

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (1) 

The power factor equation in (1) requires the use of 
complex math functions, and the programmer must account 
for potential divide-by-zero errors that may result from the 
IEC 61131 compiler under certain conditions. 

By developing a customized function within the IEC 61131 
logic engine, the equation may be reduced to a simple function 
(which can later be called by a program) that only requires the 
entry of the IED megaVAR and megawatt quantities, similar 
to (2). 

 ( )L1_ PF : PF L1.MVar,L1.Mwatt=  (2) 

Note the complexity of the power factor calculation. 
Handling of the divide by zero is now both accomplished and 
hidden by the embedded function. 

In addition to complex math calculations, functions are 
useful for other purposes, such as real-time comparison of 
analog quantities to confirm the health and validity of 
measurements from multiple data sources. Voting functions 
are easily implemented to accept input quantities only if the 
values are confirmed to match multiple data sources within an 
acceptable range. When measurement mismatches are 
detected, alarm signals are easily generated to send an 
immediate notification to maintenance personnel to indicate 
that equipment is out of service or calibration is required. 

A function block is a routine for which a program or 
calling logic block has definitions for multiple instances to 
perform specific tasks. Each instance is independent and must 
have a unique name in a project. Fig. 4 shows example code to 
instantiate a CFC function block. A function block retains 
output variable status between processing intervals. Function 
blocks typically do not directly access and act on global 
system variables. An example of a function block is a timer 
block (TON). A TON is a calculation value that must be 
retained between each processing cycle to ensure POUs 
operating in parallel properly read the present status of the 
timer variable. Each function block includes a logic input pin 
to determine the reset condition.  

 

Fig. 4. Declaring an instance of a function block. 

A program has the most capability or the highest order of 
functionality in an IEC 61131 system given its ability to read 
and write I/O and system variables and call functions or 
function blocks. Programs can be standalone units. They 
contain logic to perform a single task, perform multiple tasks, 
or invoke functions and function blocks. 

III.  LOGIC PROCESSING IN MODERN UTILITY SUBSTATIONS 

Many conventional, hardware-centric, PLC-based 
automation systems depend on architectures with highly 
concentrated hard-wired I/O. Logic functions may simply read 
and compare the present value of these points at any instant in 
time to make logical comparisons. Regardless of the speed of 
reading the I/O, the data within the logic functions are 
considered coherent because they are detected as part of the 
same read function and are considered to be detected at the 
same instant in time. Because the points are monitored in real 
time, data latency when reading point status can often be 
ignored. While this design approach may appear to simplify 
logic programming, due to the practical limits of I/O wiring 
distances, this approach complicates the administration of 
safe, cohesive wide-area controls for geographically 
distributed systems. The cost and complexity of these copper 
terminations force designs to rely only on the data locally 
terminated and then process data to be sent to other locations 
via control messaging. This additional step reduces the 
amount, type, and speed of data to be distributed among PLCs. 
Information simultaneously presented to the programming 
interface is actually detected, calculated, and received via 
digital communications at unrelated times. During this 
continual asynchronous data acquisition, the PLC is constantly 
attempting to represent the present state of the system. 
However, this representation is never the actual state, but 
rather it is the present state of the data in the most recent 
responses to I/O reads, calculations, and message reception. 
Also, this requires that systems depend on robust, secure 
communications to transfer control signals between widely 
dispersed locations. 

When planning to automate a utility substation as a 
mission-critical system example, we quickly recognize that 
many modern substations lack the hard-wired I/O points 
needed to support a conventional PLC system. We are left 
with a choice—add extra wiring and PLC equipment needed 
to gather the necessary I/O readings or determine the viability 
of utilizing presently installed equipment via digital 
messaging. 
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Many modern substations utilize microprocessor-based 
PCM IEDs that are fully capable of reading and exchanging 
the status of breakers, control switches, analog readings, and 
calculated logic values. For the most advanced automation and 
control systems, it is to our advantage to share the 
measurements, calculations, and decisions from these devices 
with other devices in the system and to do so without 
additional costly wiring. A communications solution must 
account for the inconsistency of data formatting that often 
results from nonstandardized protocols, normalization of data 
readings, latency of data reporting, quality and accuracy of 
measurements, and confidence in time stamps.  

Once the data are gathered from substation IEDs and 
output values are calculated, we must ensure fast, 
deterministic, and secure control signaling. Most importantly, 
we must implement logic programming methods that meet or 
exceed the performance characteristics of traditional hard-
wire-based automation systems. IEC 61131 programming 
provides the tools, performance, and flexibility for this 
purpose. 

IV.  NORMALIZE IED READINGS THROUGH DATA STRUCTURES 

Substation IED data are often collected, aggregated, and 
reformatted through an information processor, PLC, or remote 
terminal unit (RTU) using a mix of protocols, such as those 
described in IEC 61850, DNP3, Modbus®, or the native 
protocols of IED manufacturers. While each protocol may 
have its own distinct advantage, when attempting to use logic 
to compare data tags with incompatible attributes, the 
formatting inconsistency creates challenges. Therefore, not 
only is the standardization of data formats important, it is also 
essential that a nonmanufacturer-specific and internationally 
recognized method be chosen for project functionality and 
longevity. For this reason, IEC 61850 data type definitions 
offer many advantages with complete definitions that include 
all of the necessary attributes needed for substation 
automation. IEC 61131 programming allows the creation of 
data structures that match the IEC 61850 data model. The 
following data types are easily embedded in an information 
processor that utilizes IEC 61131 programming: 

• Single-point status (SPS) 
• Double-point status (DPS) 
• Protection activation information (ACT) 
• Activation information directional protection (ACD) 
• Binary counter reading (BCR) 
• Measured value (MV) 
• Complex measured value (CMV) 
• Integer status (INS) 
• Controllable analog set point (APC) 
• Controllable integer (INC) 
• Binary controlled step position (BSC) 
• Integer controlled step position (ISC) 
• Modbus coil control (MDBC) 
• DNP3 controllable single point (DNPC) 
• String (STR) 
• Time (TIM) 

Once the data types are embedded and defined in the 
information processor database, each protocol driver stores 
individual data tags according to standardized rules. This 
process of normalizing protocol data to be of the same format, 
regardless of the data acquisition protocol used, through 
standardized database structures simplifies subsequent logic 
processing, data movement, and reporting that takes place 
within the logic engine. When certain required attributes of the 
data structure are not supported by a data acquisition method, 
the information processor calculates and provides the missing 
details.  

For example, protocols such as those described within the 
IEC 61850 standard and DNP3 include both status values and 
time-stamp information for data tags. Therefore, when 
properly configured, the entire data structure populated from 
these two protocols may be considered coherent relative to the 
IED-reporting capabilities and safely compared in the 
IEC 61131 logic engine. Fig. 5 shows a suggested method of 
mapping DNP3 data to an IEC 61850 MV data type. 

 

Fig. 5. Mapping a DNP3 point value to an IEC 61131 data structure. 

However, Modbus is a protocol that inherently lacks the 
time-of-day information needed for the time-stamp attribute of 
the IEC 61850 data structure. When reading Modbus values, 
the information processor recognizes the missing time-of-day 
attribute and fills in the time stamp from the high-accuracy 
onboard system clock and appropriately marks the time 
quality. This process allows Modbus, IEC 61850, and DNP3 
to utilize equivalent data types to support simple data 
movement between protocols. 

If needed, IEC 61131 programming provides easy rejection 
of values due to unacceptable data latency, time quality, or 
data quality. Programmers applying the IEC 61131 standard 
should properly account for time-stamp latency in their logic 
functions. 
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By creating complete and standardized data structures 
within the information processor, each protocol fills in the 
available field as indicated from the IED. Table I shows a 
suggested method of populating data structures given the 
available attributes of popular utility protocols. The data 
structure includes a protocol superset of all available fields, 
primarily based on the IEC 61850 standard. For example, an 
IEC 61850 measured value (MV) data type indicates an 
IEEE signed 32-bit float value, thus nearly every 32-bit 
reading from an IED, regardless of protocol, is stored in the 
database as an MV data structure. Other formats can be 
converted and stored as IEEE signed 32-bit float values. Other 
standard data types are easily supported through IEC 61131 
programming. 

TABLE I  
DATA ATTRIBUTES ASSIGNED BY PROTOCOLS 

Data 
Structure 
Attribute 

IEC 61850 DNP3 Modbus 
Fast Message 

Protocol 

stVal 
(Status value) 

Protocol Protocol Protocol Protocol 

quality_t 
(Data quality) 

Protocol Protocol Protocol Protocol 

timeStamp_t Protocol Protocol 
Information 
processor 

Protocol 

timeQuality_t Protocol 
Information 
processor 

Information 
processor 

Information 
processor 

Sharing data tags between protocols is greatly simplified 
because the IEC 61131 programmer may then use basic copy 
statements to exchange data values between functions, 
programs, or devices. Additionally, large data blocks are 
easily exchanged between devices through standard 
communications protocols, such as IEC 61850 MMS, 
IEC 61850 GOOSE, or DNP3, and the tables may include the 
time stamp and data quality within each data tag. 

Binary status and control tags are also stored using 
IEC 61850 data structures and standardized for all protocols. 
Similar to analog tags, these data structures are easily shared 
among the various protocols, including high-speed protocols 
such as IEC 61850 GOOSE and MIRRORED BITS

® 
communications. Additionally, the IEC 61131 logic engine 
supports multiple processing threads, priorities, and task 
intervals to support execution of high-speed logic expressions 
operating independent from lower-priority processing threads 
and background functions. This separation of tasks guarantees 
deterministic control for high-speed protocols in support of 
teleprotection, interlocking, and high speed automation. These 
automation applications include substation automation, 
automatic system reconfiguration, fault restoration, fast bus 
trip, load shedding, distribution automation, volt/VAR control, 
dynamic feeder optimization, and automatic generator control. 
High-speed processing rates ranging from 1 to 4 milliseconds 
are typical for these critical automation tasks. 

V.  SIMPLIFY PROGRAMMING BY COMBINING IEC 61131 AND 

IEC 61850 STRUCTURES 

By designing the IEC 61131 programming interface to 
accept standardized IEC 61850 data structures, the system is 
designed to immediately process incoming data without 
further analysis or tag manipulation. Because each structure 
carries the stVal, time stamp, and quality, the user easily 
passes the data tag through the system to another protocol or 
optionally uses the internal logger to record the present value 
and time stamp. The example shown in Fig. 6 illustrates how a 
CMV data type served from an IEC 61850 device is easily 
passed to the database with minimal analysis or manipulation 
by the information processor. 

Complex Measured 
Value

Information
Processor

IEC 61850 MMS Client 
CommunicationsIEC 61850 MMS

Server

Relay/IED

IEC 61131
Tag Structure

instCVal
mag
ang

q
t
db
zeroDb
rangeC

[ DataType: CMV ]

cVal
mag
ang

range

 

Fig. 6. IEC 61850 data structures transfer directly to IEC 61131 data tags. 

Once the tags are normalized within the database, they are 
easily transferred to another protocol, as shown in Fig. 7. 

Information Processor 
IEC 61131 Tag DatabaseIEC 61850 MMS

Server

Relay/IED

[MV: MWatts]
[DNP_MAP1
_Index_001]

instMag
mag

q
t
db
zeroDb
rangeC

range

instMag
mag

q
t

db
zeroDb
rangeC

range

SCADA Client 1

HMI 1

SCADA Client 2

DNP_Map1_Index_001 := BKR_1260_61850_MWatts
 

Fig. 7. Use simple IEC 61131 copy statements to easily transfer tag status to 
multiple clients. 

IEDs programmed using the IEC 61850 standard are 
configured via Substation Configuration Language (SCL), 
Configured IED Description (CID), or IED Capability 
Description (ICD) file management. These files have a 
uniform, standardized template defined by the IEC 61850 
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standard, and many IEDs actually accept and use the file 
directly to configure in-service behavior. Using programming 
methods in this paper, the information processor data, 
regardless of the IED of origin, are mapped to IEC 61850 data 
sets, which are defined and stored in a template file and 
“pushed” to the remote IED. Also, once the CID and/or ICD 
files are specified, the tag lists are easily imported and 
interpreted by the IEC 61131-3 programming interface, 
allowing offline and automated template-based data mapping 
for supervisory control and data acquisition (SCADA), 
distributed control system (DCS), human-machine interface 
(HMI), and event notification. As shown in Fig. 8, a complete 
library of data types is important to allow simple transfer of all 
IEC 61850 device tags to the information processor database. 

 

Fig. 8. Build IEC 61131 data structures to match any IEC 61850 data type. 

VI.  USE IEC 61131 PROGRAMMING FOR  
DETERMINISTIC, HIGH-SPEED CONTROL 

When installed on a real-time embedded operating system, 
an IEC 61131 logic engine uses cyclic and scheduled high-
speed processing to ensure deterministic control.  

In most instances, multiple processing threads are offered 
to support user-configurable cycle times and thread priorities. 
By properly configuring thread prioritization, automation 
logic operates without compromise, while other functions 
operate at a lower priority, giving the user flexibility to 
specify primary and background processing threads. This 
separation of tasks guarantees deterministic control for high-
speed protocols that are needed for substation automation, 
including automatic system reconfiguration, fault restoration, 
fast bus trip, load shedding, and automatic generator control. 
High-speed processing rates ranging from 1 to 4 milliseconds 
are typical for these critical automation tasks. The embedded 
real-time operating system creates a deterministic logic 

processing environment with little jitter and dramatically less 
susceptibility to malware. 

An event-driven operating system, such as the Microsoft® 
Windows® operating system, allows preemption (or 
interruption) of tasks by other processes determined by the 
operating system to be of higher priority. An IEC 61131 logic 
engine operating on an event-driven operating system is 
susceptible to increased processing jitter as more processes are 
added to the operating system. Unfortunately, programming of 
another task, perhaps by another individual, may affect the 
performance of high-priority, mission-critical tasks without 
either designer knowing the problem exists. 

VII.  PORT ACCESS CONTROL USING IEC 61131 

PROGRAMMING LOGIC 

Advanced information processors offer built-in security 
features with programmable functionality enabled through 
IEC 61131 logic. To name a few options, detailed port 
statistics and control elements may be monitored, including 
online and offline indications, individual port enable and 
disable, data traffic monitoring and parsing, and pass-through 
connection enable. 

In addition to centralized Lightweight Directory Access 
Protocol (LDAP) user account authentication, the information 
processor enables any combination of logic or control points 
to allow and/or block transparent communication to critical 
cyberassets, such as line protection relays. Fig. 9 shows a 
common substation communications architecture with a need 
for supervisory control of all transparent communications. 
This type of access control ensures only authenticated and 
proven active employees gain access to the substation IEDs 
based on end-user-defined employee and activity rules, roles, 
and responsibilities. 

 

Fig. 9. Keep transparent port access restricted until control logic grants 
authority (i.e., SCADA). 
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Fig. 10. Use a simple IEC 61131 logic expression to enable transparent communications to only one IED.

These security-based control tags may be controlled and 
monitored using numerous methodologies to add another layer 
of protection to engineering access connections. Fig. 10 shows 
an example where a SCADA protocol sends control 
commands to an IEC 61131 CFC block, allowing strict 
supervision of all transparent communications to a selected 
destination device. SCADA may keep the disconnect pin 
asserted at all times until SCADA properly authenticates a 
requesting user for access. This pin is used in logic as a 
permissive to deny access to the communications channel 
until the disconnect pin is deasserted. 

Numerous IEC 61131 pickup and dropout timers and 
latches are available that are often used to customize and 
group communications diagnostics information. This is 
another area where shared data structures simplify the 
programming necessary to share this information with other 
connections, such as SCADA. 

VIII.  USER ACCESS CONTROL THROUGH IEC 61131 

PROGRAMMING LOGIC 

Advanced IEC 61131 programs exploit extended 
IEC 61131 programming functions found in the information 
processor to monitor traffic on communications channels. A 
commonly used case involves monitoring traffic on a port 
connection for the purpose of detecting undesired access or 
entry into an unacceptable access level.  

When monitoring and detecting the entry into an undesired 
access level to an IED, static feedback from the IED tells the 
level of user access. For example, a command prompt may be 
displayed differently for a Level 2 command line prompt 
compared with a Level 1 prompt. In most cases, this prompt is 
a static response from the IED and may not be altered by the 
user. As a result, the fixed returned character strings are used 
to monitor the user access level within an engineering access 
connection.  

Further, IEC 61131 programming can also trigger and 
instruct the real-time traffic monitor to detect the unique IED 
command prompts and take appropriate logic actions if 
undesired entry is noted.  

As shown in Fig. 11, we first define a trigger 
Destination_RX_Message_1 in the access point traffic 
monitor. In the access point router (APR), the destination 
device is the outgoing connection, thus the protective relay. 
Next, in Fig. 12, we define a Destination_TX message, which 
is a transmitted message that will be sent once the undesired 
prompt is detected.  

 

Fig. 11. Add one Destination_RX message for monitoring the IED 
command prompt. 

 

Fig. 12. Add one Destination_TX_Message used for transmitting the control 
message upon detection of undesired access. 
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Fig. 13. Add command prompt string and transmit string. 

 

Fig. 14. Program IEC 61131 logic to transmit messages upon detection of Destination RX_Message_1. 

As shown in Fig. 13, the STR variables are then 
programmed based on the expected unique string 
combinations and desired transmit message. 

Fig. 14 shows the CFC logic that triggers the Destination 
TX_Message_1 whenever the Destination RX_Message_1 is 
received during any communication with the protective relay. 

After downloading the IEC 61131 code to the information 
processor, the logic engine continually monitors the 
connection for a received character set matching =>>. Once 
detected, the logic engine immediately transmits ACC<CR> 
to the IED, which, in this case, forces the relay immediately to 
Access Level 1. (Note that in this case, due to momentary 
Level 2 access, the protective relay alarm contact momentarily 
pulses, indicating unwanted intrusion.) Because the intruder 
has no option to modify the command prompt in IEDs with 
static feedback prompts, this IEC 61131 logic permanently 
blocks Level 2 access from anyone entering through this 
communications path. 

IX.  CONCLUSION 

Standardized, nonproprietary IEC 61131 programming 
simplifies project configurations for substation automation 
needs. Based on common application requirements, 
engineering teams may efficiently produce standardized 
IEC 61131 automation libraries and streamline programming 
procedures for potential repeat projects. The benefits from 
reduced engineering costs, reduced training cost, and overall 
increased productivity can be substantial.  

With proper definition and utilization of data structures 
within the embedded information processor, it is possible to 
configure an integrated IEC 61131 logic engine to process 
data tags and control commands deterministically at the 
programmed task interval of the IEC 61131 logic engine. 
Advanced embedded information processors often allow cycle 
times at or below 4 milliseconds. This level of performance is 
not achievable using an external, nonintegrated logic engine 
because multiple processing intervals are necessary to read 
and write logic variables and subsequently output control 
commands. 



8 

 

High-speed, peer-to-peer protocols are critical for 
maximizing the level of determinism possible through the use 
of an IEC 61131 logic engine. By using IEC 61131 
programming to trigger control commands via protocols such 
as IEC 61850 GOOSE or MIRRORED BITS communications, 
the outgoing control signal transmits within one processing 
interval and is typically received by the remote device in less 
than 10 milliseconds (4-millisecond processing interval at 
each end). 

Multithread IEC 61131 logic programming offers 
additional potential and promotes further application 
extensions. Multithread support typically includes adjustable 
processing rates along with configurable thread priorities, 
allowing optimal utilization of the information processor. 
Multithread prioritization and IEC 61131 programming 
flexibility offers significant performance benefits for modern 
substation automation applications. 

As demonstrated through examples in this paper, 
IEC 61131 programming also offers flexible programming 
options to enhance secure access control policies. Users may 
combine powerful IEC 61131 logic controls with advanced 
and integrated security functions to develop customized 
solutions to fit their needs. 
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