
Whitelist Malware Defense for Embedded
Control System Devices

Josh Powers and Rhett Smith
Schweitzer Engineering Laboratories, Inc.

Published in
Sensible Cybersecurity for Power Systems: A Collection of

Technical Papers Representing Modern Solutions, 2018

Previously presented at
Saudi Arabia Smart Grid 2015, December 2015

Originally presented at the
Power and Energy Automation Conference, March 2015

1

Whitelist Malware Defense for Embedded
Control System Devices

Josh Powers and Rhett Smith, Schweitzer Engineering Laboratories, Inc.

Abstract—Malware protection is a necessity for any electric
device in modern critical infrastructure. We must all protect our
critical cyber assets with antivirus as North American Electric
Reliability Corporation (NERC) CIP-007 R4 states, but more
broadly, we must protect our assets from malicious code infection
regardless of whether they are identified as critical assets or not.
Embedded devices and traditional personnel computer devices
should be protected. The Stuxnet worm demonstrated that air
gaps and unplugged devices are not immune from infection. We
must engineer devices and systems to protect against the impact
of malware.

Traditionally, this protection was accomplished by using
blacklist technology, where the technology watched for known
bad code and blocked it. This resulted in a race to update
malware protection technology when new threats were
discovered, before infection happened. With malware statistics
topping 83 million pieces of code, based on the August 2014
McAfee Labs Threats Report, and growing every day, the
administrative task is impossible to keep up with. This design
also can put excessive burden on processors, slowing
computations and communications.

New malware protection technology is designed using a
whitelist architecture that only allows known good code to
execute on the device. This simplifies administrative overhead
because new updates are not needed when new malware is
released. A control system environment is built with application-
specific devices that are set to accomplish one or more tasks and
left alone to continue accomplishing the same tasks for many
years, setting a perfect stage for whitelist malware protection
technology.

This paper investigates the benefits that whitelist malware
protection provides at the application layer (similar to existing
anti-malware technology) and explains why embedded devices
need architecture-specific malware protection. The paper shows
that correctly combining malware protection and embedded
architecture improves the reliability and cost of ownership of the
whole system. The paper also highlights the enhanced security
that whitelist malware protection provides over traditional
solutions and how these principles apply to computers and
embedded devices. The paper shows how whitelist malware
protection meets and exceeds the NERC CIP requirements in
Versions 3 and 5.

I. INTRODUCTION
Malicious software, or malware, is a tool often used to

compromise the integrity of software or hardware. It is
primarily used due to the power of automating the
reconnaissance, infection, and compromise of a wide selection
of targets. Simply put, malware can automate the exploitation
of a system and do it much faster than one person.

Strict laptop computer usage policies and constant malware
protection updates are protection methods that already exist in
the electric sector. Malware trends have moved from targeting

code flaws to enticing people to click links in emails or visit
infected websites. Corporate infrastructure protection plans
and technology are mature and established for malware
protection. So how can we bridge the gap between corporate
infrastructure protection plans and malware protection for
control systems that consist of embedded, application-specific
devices, many of which run on real-time operating systems?
This changes the game completely because we are now talking
about an infrastructure that is built for machine-to-machine
(M2M) communications that have to meet high-reliability and
availability requirements with very little downtime tolerance
in control systems where physical consequences to cyber
exploitation exist. Malware protection solutions have to
support safe and reliable operations and work with the
attributes of the system they are applied to. This leads us to
the conclusion that the solutions designed to protect corporate
systems are not a good fit for the control system due to the
vast differences in their attributes.

Whitelist malware protection provided at the application
layer is a viable solution for control systems. This paper
discusses the enhanced security provided by whitelist malware
protection compared with traditional malware solutions. It
further discusses how the combination of malware protection
and embedded architecture can improve the reliability and
ownership cost of an entire control system. The paper also
discusses the implications of whitelist malware protection on
North American Electric Reliability Corporation Critical
Infrastructure Protection (NERC CIP) requirements in
Versions 3 and 5.

II. INCREASING MALWARE RISKS IN CONTROL SYSTEMS
Increasing demands on power systems today are creating

more opportunities for malware infections. Smart grid is a
term that has many definitions, but all of those definitions can
be boiled down to advancements in control, measurement, and
operations to automate new functions or previously manual
ones. These advances have increased the number of electronic
devices and the amount of code in the devices that make up
power systems. They have also increased the communications
links between all of those devices. These factors have
increased the attack surface and the potential spread of
malware by providing more targets, entry points, propagation
paths, and potential vulnerabilities.

Based on the research results of McAfee Labs in their
August 2014 quarterly threats report, malware is increasing on
average 100 percent per year, and that trend is accelerating
[1]. Malware developers have a lucrative market and are able

2

to sell their malware for Bitcoin or other currency. In
comparison to the average $60,000 starting salary of a
software engineer in the United States, and considering that
there have been very few successful convictions on malware
charges in the court system, illegal software engineering
activities do not have strong enough deterrents to stop
malware from being created. It is easy to see that ethics are the
only thing stopping more people from making a career out of
malware development. The writing of malware has gone from
the curious and smart just wanting to see what they can do to
organized criminals and nation-state actors with financial and
political agendas offering advanced training and recruitment
programs. Protecting power systems from these motivated and
advanced sources is challenging, but we have the advantage
when we design and engineer systems with protection
capabilities that leverage the core attributes of the power
system.

III. POWER SYSTEM ATTRIBUTES PERFECT
FOR CYBERSECURITY

Power system networks are not like corporate information
technology networks because they have a unique set of
attributes that make information technology (IT) cybersecurity
technology an imperfect fit. Building a cybersecurity program
around these unique attributes provides the long-term stability
and core foundations that we can use to advance cybersecurity
to new levels. The control systems operating power systems
are engineered with a specific purpose and are built to the
highest levels of reliability. Each piece of technology,
communications session, and data set is implemented for a
reason. Every device used on the power system is carefully
engineered and has a specific task. Each task is carefully
programmed and then, in most cases, left alone to run for
many years. This provides a baseline behavior for the device
(how long it takes to respond, the amount of data served, what
other devices talk to it, or what other devices it responds to).

Because the control system is built with M2M applications,
baseline behaviors will not change unless the owner changes
the services or devices on the system. These changes are rare
in comparison to corporate IT infrastructures, so they can be
managed with good change control policies and planned for in
order to accept a new baseline. This level of understanding is
the cybersecurity advantage. The best defense is to know the
system, establish methods and means to monitor what is on
the system, and react to undesired events. Instead of watching
for bad code on the device, operators monitor and confirm that
only approved devices and data are on the system. This
provides the platform to protect against known and unknown
malware. It also provides measurable success criteria for
system uptime, reliability, and service provided, giving
purpose to the engineers that operate the power systems on a
daily basis. Baselining such as this results in metrics for asset
management that inform operators what devices are approved
on the system and that those devices are operating correctly.
Communications outages are captured and unauthorized
devices are logged. When systems are understood and

monitored to this level, it is extremely difficult for attackers to
hide their actions.

Power systems consist of many control and monitoring
devices that are application-specific technology or embedded
devices. These embedded devices have a variety of
microprocessor architectures and operating systems. With a
whitelist malware protection approach, we have the device
operations and communications that can be monitored to
confirm the system is doing only what is desired by the asset
owners.

Even better, the operational and administrative
management (OAM) costs are very low when technology
applies safeguards in a whitelist architecture because it is
locked in by the manufacturer. The only time the footprint
changes is when a firmware upgrade is performed. There are
no requirements for signature or patch updates as new
malware is released. The devices are purpose-built, so the
running of specific tasks and the communications are
consistent. Specific protocols are enabled and turned on for a
task and allowed to run continually for that task, enabling a
communications baseline to be established. Control system
devices on the power system measure the power at various
distributed geographic locations, and any change in
measurement will be seen by the operators or the automation
schemes, triggering an event response action.

Based on the native attributes, the power system is perfect
for some of the most advanced cybersecurity ever seen. Two
simple protection methods contribute to this level of
cybersecurity: whitelisting and deny-by-default. A whitelist
approach is the method used to ensure that only desired
devices, communications, and data are present on the system.
The keys to its success are knowing what is on the system and
knowing what each device is doing (this is the baseline). The
deny-by-default method requires each device and
communication to be off unless explicitly turned on for a
purpose. In power systems, the advantage goes to engineers
and operators when they know their system, establish a known
good baseline, and have methods to ensure that this baseline is
preserved.

IV. POWER SYSTEM ATTRIBUTES CHALLENGING
FOR CYBERSECURITY

The foundations of the control system architecture enable
the industry to advance cybersecurity to greater levels than
corporate networks, but there are specific challenges we must
address to get there. Power systems are built with many
embedded control and measurement devices. Embedded
devices are not open computer platforms that allow the end
user to install new software. The software running on these
devices is produced by the manufacturer, and steps are taken
to ensure that no new software can be installed. This is good
and bad. The good part is that malware is software trying to
install itself on these devices, so the architecture is already
safeguarding against this. The bad part is that the end user has
limited visibility of what software is running on the device.
This is important for patch management procedures. The end
user now has to establish monitoring processes for the

3

manufacturers they have purchased products from and rely on
these manufacturers to not only alert them when security
vulnerabilities are discovered but release the mitigations in a
timely manner.

Another challenge is the availability requirement for
control systems. There is very little tolerance for downtime.
Any reboot or decommissioning to take a product out of
service for updates costs the company money and increases
safety hazards. These updates need to be planned and tested
well in advance, which will result in a slower deployment time
between when security vulnerabilities are fixed and when they
are deployed on the control system. The best mitigation to this
is to select devices that accomplish the job they are intended
to do with as small a code footprint as possible. These devices
all work as a larger system, so many times when taking one
device out of service for maintenance, the overall system
suffers.

It is good that these systems have many channels for
monitoring, and that operators watching the system
understand event response plans. The challenge comes with
change control. When changes are made, alarms and logs
generated by these changes need to be expected or operators
will waste time investigating them, or worse, will get
comfortable seeing alarms and not respond. Most importantly,
these systems are built for reliability and use redundancy to
meet extreme reliability requirements. The contingencies to
any change must be planned and well understood before the
change is applied. This mandates that lab testing and system
validation testing be performed and that engineering standard
documents inform work instructions to prevent any undesired
operations.

V. MALWARE PROTECTION ARCHITECTURES
 There are four common means of protecting a system from

malware that we look at in this paper: blacklisting,
whitelisting, mandatory access control (MAC), and rootkit
prevention.

A. Blacklisting
Blacklisting is the traditional approach used in corporate

environments to protect computing resources. In this
environment, systems change frequently to support corporate
requirements. Blacklisting works well in these environments
because updates are easily managed and automated. When
new malware is detected, a signature is created and all of the
clients receive the new signature. Blacklisting has a long
history and has been shown to work reasonably well in many
cases. The signatures are stored in large proprietary databases
that are updated regularly with the newly detected signatures.
Because new signatures are created regularly, a system with a
recently updated signature database must scan all files and
processes on the device in order to check for possible
infections it did not previously know about.

B. Whitelisting
 Whitelist anti-malware creates a signature for all of the

allowed software on a system and assumes that the system

will rarely change. This means that programs cannot be
installed or modified without updates to the whitelist.
Whitelist protection is fairly unexplored because it is difficult
to manage in corporate environments. There are also two
kinds of whitelist anti-malware. In some systems, the whitelist
can be modified in the field by entering a password. This type
of system is used in some corporate environments. The other
way to use whitelist anti-malware is to cryptographically sign
the files with a public and private key pair and keep the
private key elsewhere. This type of system is more difficult to
update because any updates have to be signed before they can
be brought out into the field. It is more secure in the field
because the secret protecting the whitelist security is not kept
on the device being secured.

C. Mandatory Access Control
MAC has a lot of support in the open source community

and has a strong backer in the National Security Agency
(NSA). MAC works by segregating applications into separate
domains of execution with very specific permissions granted
to those domains. This is in contrast to discretionary access
control (DAC), which is the default system used by most
operating systems. Fig. 1 shows that with DAC systems,
permission levels lower on the list have access to anything
above them. Kernel can access root and root can access
anything user specific. While the kernel still has access to
anything in user space with MAC, each user space application
is segregated into separate domains that all have limited,
specifically granted permissions to each other. This narrows
the scope of an exploit, limiting its reach to only the
permissions the original domain had. Before, if the root layer
was compromised, the entire user space was compromised.

Kernel

Root

User

User Space

DAC

Kernel

User Space

MAC

Fig. 1. DAC and MAC Protection Architectures

D. Rootkit Prevention
Rootkit prevention is the newest and most unexplored area

of malware protection. It works by attempting to ensure that
drivers and kernel modules come from a trusted source and, if
not, preventing their use entirely. Drivers and kernel modules
can both circumvent many other security measures because of
their access to the kernel or operating system. Some rootkit
prevention systems also attempt to verify that system calls
have not been modified or interfered with. Adding a hook, a
piece of code that runs when another function is called, to a
system call is a common means of getting a rootkit into the
kernel, and it is exceptionally difficult to detect.

4

VI. EVALUATING SECURITY OF MALWARE TECHNOLOGY
Each of the previously described methods that are used to

protect a system from malware has advantages and
disadvantages.

A. Blacklisting Benefits and Drawbacks
Blacklisting is a reactive approach. It suffers from zero-day

vulnerabilities because of this, but it does have the advantage
of experience. It also benefits from the fact that specific
attacks can be countered once a new signature is created. The
biggest disadvantage, however, comes from the requirement to
update the blacklist antivirus signature database on a regular
basis in order to maintain its effectiveness. This is a poor
design in an embedded system where updates are costly and
infrequent. As mentioned previously, when a signature
database is updated, a scan of the system must be performed to
ensure that an infection that was previously undetectable is
now detectable. The problem, though, is that embedded
systems generally perform a specific task, often with real-time
constraints. They are generally not engineered with occasional
central processing unit (CPU) spikes and I/O-intensive disk
scans in mind. This means that simply updating the signature
database could degrade the ability of an embedded system to
perform its main function for a period after the install. These
limitations make blacklist anti-malware unsuitable for use in
embedded systems.

B. Whitelisting Benefits and Drawbacks
Whitelist anti-malware maximizes safeguards while

minimizing the administrative overhead in purpose-built M2M
infrastructures. Whitelist malware protection is optimized for
control systems instead of corporate information systems
because of the reduced change management requirements on
control systems. When there are frequent changes in what
each devices does, whitelist malware protections become
administratively burdensome. Each time an update is made to
the system, an update must be made to the whitelist signature
database as well. This is cost prohibitive in corporate
environments, where updates to software are frequent.
However, in an embedded system, updates to software are
infrequent and it is not infeasible to include updates to the
whitelist signature database when updates are made. In fact, it
is often the case that updates to software in an embedded
system are done via firmware image updates that can include
the whitelist signature updates as well. The strong suit of
whitelist anti-malware is that it does not require periodic
updates to keep up with recent malware activity and does not
suffer from zero-day exploits, except those against the
whitelist anti-malware software itself.

Another weakness of whitelist anti-malware is that it
cannot perform checks on running software. Once a piece of
software has been loaded into memory, whitelist anti-malware
can no longer say anything meaningful about its integrity.
This means that a whitelist anti-malware solution cannot
protect against malware that exploits things like buffer
overflows, except to contain the exploit to only the running

process that was exploited. Whitelist anti-malware does
prevent an infection that has been persisted to disk from
running.

C. MAC Benefits and Drawbacks
MAC takes a different approach to security than that of

either whitelist or blacklist anti-malware. Instead of
attempting to block the execution of a program, it attempts to
constrain the reach of running software. All resources on a
system are placed in a predefined domain and domains are
then given specific access to other domains.

There are many MAC implementations, but the most
common MAC systems are AppArmor and Security-Enhanced
Linux (SELinux), both of which provide a similar result when
properly configured. Individual executables are limited to the
minimum set of permissions they need to do their job. This
means that an exploited process will have limited reach and
will be less likely to corrupt a system or prevent it from
performing its primary function.

The downside to MAC is that it is very difficult to
configure correctly, and mistakes in the configuration may not
be detectable without a significant design effort. Fortunately,
the effort of setting up MAC for an embedded system falls to
the company creating the firmware, and they generally have
the information required to correctly configure MAC. In the
corporate environment, MAC is much more difficult to
configure because small changes in the system can be difficult
to adapt to in the MAC policy. Another problem with MAC is
that it makes no attempt to verify the integrity of the process
being placed into a domain. This means that an exploit that
can modify the file system can persist its infection and perhaps
spread by infecting other executables on the system,
increasing its reach over time.

D. Rootkit Prevention Benefits and Drawbacks
Rootkit prevention provides yet another approach to

securing a system. Generally speaking, operating systems are
divided into two segments: the user space and the kernel
space. User space tools are kept secure largely by software
running in kernel space. Requests for access to all resources
on a device go through the kernel, so it is the logical place to
provide security. However, the kernel can be compromised, so
a layer of security to attempt to detect these types of attacks,
called rootkits, is needed.

Rootkit prevention is difficult at best because there is no
other layer managing and monitoring the kernel, so the kernel
must attempt to monitor itself. There are two common kinds
of rootkit preventions. The first one attempts to verify that
syscalls from user space to the kernel are not tampered with
and the other attempts to verify that drivers and kernel
modules that are loaded into the system are not malicious. The
second kind is a form of whitelist anti-malware for drivers and
kernel modules. Something similar is already implemented in
Microsoft® Windows® systems, but not in Linux® systems, by
default. The first type, however, is more difficult and is the
subject of current research.

5

VII. LAYERING MALWARE PREVENTION TECHNOLOGIES
All of the malware prevention technologies we analyzed

have strengths and weaknesses. A solution we identified to
prevent the weaknesses from being exploited is to layer
malware prevention technologies. As mentioned, a whitelist
antivirus system cannot prevent runtime exploitation of things
like buffer overflows. Layering on MAC to limit the scope of
access that an exploited running application has is a good
solution. MAC has no concept of integrity when placing a
particular binary into a domain and granting it the permissions
associated with that domain, so whitelist anti-malware should
be layered on to prevent modified binaries from loading.
Neither whitelisting nor MAC can detect a compromised
kernel, so rootkit prevention technology should be added as
another layer to mitigate these vulnerabilities.

By layering these technologies, we found that a secure
system that is compatible with an embedded environment can
be provided. This solution provides the best level of integrity
of the software running on the embedded system, and the
reach of attacks can be minimized. Also, the layered solution
provides ample warning of attempted infections so additional
measures can be taken outside of the embedded system. If an
attack is detected against an embedded system, the network
firewall can be hardened to stop that attack in particular and
then forensic data can be gathered on the attack and the
affected systems can be patched and updated.

VIII. LONG-TERM ADMINISTRATION
Long-term administration of an embedded system running

blacklist anti-malware requires frequent signature updates.
Regular updates must be pushed to the embedded system and
regular scans must be made to ensure infections do not already
exist that were not previously known about. Device burden is
also a large problem. As previously mentioned, regular system
scans must be performed. These scans create a large, irregular
burden to disk I/O and to the CPU. Recent measurements
show that up to 95 percent of the CPU processing power can
be consumed during a scan.

Long-term administration of a system using whitelist
antivirus depends on the environment. In a corporate
environment, where software is updated very regularly, the
administration of whitelist anti-malware would be time- and
cost-prohibitive. However, in an embedded system,
administration is minimized and only needs to be done when
the embedded system itself is updated, which is generally not
often. Additionally, the maintenance of the whitelist generally
would fall to the firmware provider, therefore decreasing the
required maintenance further. An embedded system running
whitelist anti-malware should require no intervention between
firmware updates for a device owner.

Another consideration in long-term administration is
burden to the system. The whitelist anti-malware system we
tested saw a 15 percent increase to system boot time but only
had a 0.5 percent increase in the time to complete a task
during runtime. The reason for a large impact to boot time but
a smaller impact to general running time is that the whitelist
anti-malware we tested uses cryptographic signatures to verify

integrity but also caches integrity lookups. This means that at
first boot, the system must run cryptographic analysis on
every executable, but after an initial check has been done, the
CPU burden decreases. In our tests, SELinux showed only a
0.5 percent increased burden overall. SELinux has no
cryptographic security, so it adds little burden. The rootkit
prevention software we tested, a variation of the program
described in [2], showed an overall 5 percent increased
runtime burden. All told, this provided a system with about
20 percent increased boot time and 6 percent increased
runtime burden. Because all of these times are constant, they
are easy to account for in an embedded system in contrast to
blacklist anti-malware, which has inconsistent burden on a
system.

IX. CONFIGURATION MANAGEMENT
Another interesting benefit of whitelist anti-malware is that

it can be used to protect system configuration. Any embedded
system will have configuration files that are not modified in
the field. Things such as boot order and the disk to be
mounted are set up in the firmware and never modified by the
end user. By modifying the system binaries that use those
configuration files and having them request integrity scans of
their configuration files, the configuration integrity can be
guaranteed. We call this voluntary scanning. Because the
individual executables have had their integrity verified, it can
be guaranteed that they will voluntarily scan their
configuration. Then, all that must be done is to create
signatures for the various unchanging configuration files on
the system, and the same whitelist anti-malware that protects
the system executables and libraries can be extended to protect
configuration and scripts.

Fig. 2 shows the general flow of whitelist integrity
verification and voluntary scanning. An executable is loaded
into memory from disk at the request of another process or
user. The whitelist anti-malware automatically scans the
executable to verify its integrity before it is allowed to be
placed into executable memory. Once the application has
loaded, it then attempts to load its configuration files. Because
it has been modified to include voluntary scanning by the
whitelist anti-malware system, it first requests that the
whitelist system scan the configuration file to verify its
integrity. If the configuration file has integrity, the executable
is notified and continues to load its configuration.

Shell Executable Whitelist Anti-Malware

Load Executable
Automatic Scan

Allow

Load

Voluntary Scan

Allow

Fig. 2. Whitelist Integrity Verification and Voluntary Scanning

6

X. COMPLIANCE CONSIDERATIONS FOR NERC CIP
VERSIONS 3 AND 5

NERC CIP from its inception recognized that devices need
to have malware protections in place. The specific technology
is not mandated, but the need for it is and the policies and
procedures to keep the technology updated are mandated.
NERC CIP Version 3 is specific to the device and states that
every critical cyber asset (CCA) needs malware protection,
and if the device cannot provide this, a technical feasibility
exception (TFE) must be submitted. This was a huge
generator for TFEs because many of these devices were
embedded, so the end user could not install malware
protection software.

NERC CIP Version 5 also requires malware protection and
the procedures to keep it updated, but applies it to the system
instead of the individual devices. This allows more freedom in
the type of technology to select, and network-based
technology can cover clients that do not have the capabilities
to run malware protection.

For embedded devices, it is up to the manufacturer to
provide the solution, either in the device or the system
solution recommendations. When the whitelist malware
protections discussed in this paper are implemented, the
compliance to NERC CIP is accomplished. A small number of
update procedures are required, keeping the operational costs
low.

XI. CONCLUSION
Control systems are a very important area of focus for

cybersecurity, and current malware protection technologies
are not ideal in that environment. However, with the proper
application of various anti-malware techniques such as
whitelisting and deny-by-default, a control system can be
reliably secured. This paper shows that control systems are an
ideal candidate for cybersecurity.

Future research is still needed into rootkit protection to find
ways to secure the kernel further and constrain exploits to the
smallest area possible.

Control system owners reduce the total cost of ownership
and improve cybersecurity by selecting technology from
manufacturers investing in anti-malware solutions with
whitelist architectures.

XII. REFERENCES
[1] McAfee Labs, “McAfee Labs Threats Report,” August 2014. Available:

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-
2014.pdf.

[2] J. Reeves, A. Ramaswamy, M. Locasto, S. Bratus, and S. Smith,
“Intrusion Detection for Resource-Constrained Embedded Control
Systems in the Power Grid,” International Journal of Critical
Infrastructure Protection, Volume 5, Issue 2, July 2012, pp. 74–83.

XIII. BIOGRAPHIES
Josh Powers received his B.A. from Washington State University in 2008. He
joined Schweitzer Engineering Laboratories, Inc. in 2010 as a software
engineer and has focused on power system network security research. He has
broad experience in the field of software engineering, but has focused largely
on security and networking. He spent most of his time during college and
shortly after working in public sector information technology, focusing on
network security. Josh is currently working on his M.S. in computer science.

Rhett Smith is the development manager for the security solutions group at
Schweitzer Engineering Laboratories, Inc. (SEL). In 2000, he received his
B.S. degree in electronics engineering technology, graduating with honors.
Before joining SEL, he was an application engineer with AKM
Semiconductor. Rhett is a Certified Information Systems Security
Professional (CISSP).

© 2015 by Schweitzer Engineering Laboratories, Inc.
All rights reserved.

20150120 • TP6676-01

	CoverPage_20181009
	6676_WhitelistMalware_JP_20150120

