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Abstract—Malware protection is a necessity for any electric 
device in modern critical infrastructure. We must all protect our 
critical cyber assets with antivirus as North American Electric 
Reliability Corporation (NERC) CIP-007 R4 states, but more 
broadly, we must protect our assets from malicious code infection 
regardless of whether they are identified as critical assets or not. 
Embedded devices and traditional personnel computer devices 
should be protected. The Stuxnet worm demonstrated that air 
gaps and unplugged devices are not immune from infection. We 
must engineer devices and systems to protect against the impact 
of malware. 

Traditionally, this protection was accomplished by using 
blacklist technology, where the technology watched for known 
bad code and blocked it. This resulted in a race to update 
malware protection technology when new threats were 
discovered, before infection happened. With malware statistics 
topping 83 million pieces of code, based on the August 2014 
McAfee Labs Threats Report, and growing every day, the 
administrative task is impossible to keep up with. This design 
also can put excessive burden on processors, slowing 
computations and communications. 

New malware protection technology is designed using a 
whitelist architecture that only allows known good code to 
execute on the device. This simplifies administrative overhead 
because new updates are not needed when new malware is 
released. A control system environment is built with application-
specific devices that are set to accomplish one or more tasks and 
left alone to continue accomplishing the same tasks for many 
years, setting a perfect stage for whitelist malware protection 
technology. 

This paper investigates the benefits that whitelist malware 
protection provides at the application layer (similar to existing 
anti-malware technology) and explains why embedded devices 
need architecture-specific malware protection. The paper shows 
that correctly combining malware protection and embedded 
architecture improves the reliability and cost of ownership of the 
whole system. The paper also highlights the enhanced security 
that whitelist malware protection provides over traditional 
solutions and how these principles apply to computers and 
embedded devices. The paper shows how whitelist malware 
protection meets and exceeds the NERC CIP requirements in 
Versions 3 and 5. 

I.  INTRODUCTION 
Malicious software, or malware, is a tool often used to 

compromise the integrity of software or hardware. It is 
primarily used due to the power of automating the 
reconnaissance, infection, and compromise of a wide selection 
of targets. Simply put, malware can automate the exploitation 
of a system and do it much faster than one person. 

Strict laptop computer usage policies and constant malware 
protection updates are protection methods that already exist in 
the electric sector. Malware trends have moved from targeting 

code flaws to enticing people to click links in emails or visit 
infected websites. Corporate infrastructure protection plans 
and technology are mature and established for malware 
protection. So how can we bridge the gap between corporate 
infrastructure protection plans and malware protection for 
control systems that consist of embedded, application-specific 
devices, many of which run on real-time operating systems? 
This changes the game completely because we are now talking 
about an infrastructure that is built for machine-to-machine 
(M2M) communications that have to meet high-reliability and 
availability requirements with very little downtime tolerance 
in control systems where physical consequences to cyber 
exploitation exist. Malware protection solutions have to 
support safe and reliable operations and work with the 
attributes of the system they are applied to. This leads us to 
the conclusion that the solutions designed to protect corporate 
systems are not a good fit for the control system due to the 
vast differences in their attributes. 

Whitelist malware protection provided at the application 
layer is a viable solution for control systems. This paper 
discusses the enhanced security provided by whitelist malware 
protection compared with traditional malware solutions. It 
further discusses how the combination of malware protection 
and embedded architecture can improve the reliability and 
ownership cost of an entire control system. The paper also 
discusses the implications of whitelist malware protection on 
North American Electric Reliability Corporation Critical 
Infrastructure Protection (NERC CIP) requirements in 
Versions 3 and 5. 

II.  INCREASING MALWARE RISKS IN CONTROL SYSTEMS 
Increasing demands on power systems today are creating 

more opportunities for malware infections. Smart grid is a 
term that has many definitions, but all of those definitions can 
be boiled down to advancements in control, measurement, and 
operations to automate new functions or previously manual 
ones. These advances have increased the number of electronic 
devices and the amount of code in the devices that make up 
power systems. They have also increased the communications 
links between all of those devices. These factors have 
increased the attack surface and the potential spread of 
malware by providing more targets, entry points, propagation 
paths, and potential vulnerabilities.  

Based on the research results of McAfee Labs in their 
August 2014 quarterly threats report, malware is increasing on 
average 100 percent per year, and that trend is accelerating 
[1]. Malware developers have a lucrative market and are able 
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to sell their malware for Bitcoin or other currency. In 
comparison to the average $60,000 starting salary of a 
software engineer in the United States, and considering that 
there have been very few successful convictions on malware 
charges in the court system, illegal software engineering 
activities do not have strong enough deterrents to stop 
malware from being created. It is easy to see that ethics are the 
only thing stopping more people from making a career out of 
malware development. The writing of malware has gone from 
the curious and smart just wanting to see what they can do to 
organized criminals and nation-state actors with financial and 
political agendas offering advanced training and recruitment 
programs. Protecting power systems from these motivated and 
advanced sources is challenging, but we have the advantage 
when we design and engineer systems with protection 
capabilities that leverage the core attributes of the power 
system. 

III.  POWER SYSTEM ATTRIBUTES PERFECT  
FOR CYBERSECURITY 

Power system networks are not like corporate information 
technology networks because they have a unique set of 
attributes that make information technology (IT) cybersecurity 
technology an imperfect fit. Building a cybersecurity program 
around these unique attributes provides the long-term stability 
and core foundations that we can use to advance cybersecurity 
to new levels. The control systems operating power systems 
are engineered with a specific purpose and are built to the 
highest levels of reliability. Each piece of technology, 
communications session, and data set is implemented for a 
reason. Every device used on the power system is carefully 
engineered and has a specific task. Each task is carefully 
programmed and then, in most cases, left alone to run for 
many years. This provides a baseline behavior for the device 
(how long it takes to respond, the amount of data served, what 
other devices talk to it, or what other devices it responds to).  

Because the control system is built with M2M applications, 
baseline behaviors will not change unless the owner changes 
the services or devices on the system. These changes are rare 
in comparison to corporate IT infrastructures, so they can be 
managed with good change control policies and planned for in 
order to accept a new baseline. This level of understanding is 
the cybersecurity advantage. The best defense is to know the 
system, establish methods and means to monitor what is on 
the system, and react to undesired events. Instead of watching 
for bad code on the device, operators monitor and confirm that 
only approved devices and data are on the system. This 
provides the platform to protect against known and unknown 
malware. It also provides measurable success criteria for 
system uptime, reliability, and service provided, giving 
purpose to the engineers that operate the power systems on a 
daily basis. Baselining such as this results in metrics for asset 
management that inform operators what devices are approved 
on the system and that those devices are operating correctly. 
Communications outages are captured and unauthorized 
devices are logged. When systems are understood and 

monitored to this level, it is extremely difficult for attackers to 
hide their actions.  

Power systems consist of many control and monitoring 
devices that are application-specific technology or embedded 
devices. These embedded devices have a variety of 
microprocessor architectures and operating systems. With a 
whitelist malware protection approach, we have the device 
operations and communications that can be monitored to 
confirm the system is doing only what is desired by the asset 
owners.  

Even better, the operational and administrative 
management (OAM) costs are very low when technology 
applies safeguards in a whitelist architecture because it is 
locked in by the manufacturer. The only time the footprint 
changes is when a firmware upgrade is performed. There are 
no requirements for signature or patch updates as new 
malware is released. The devices are purpose-built, so the 
running of specific tasks and the communications are 
consistent. Specific protocols are enabled and turned on for a 
task and allowed to run continually for that task, enabling a 
communications baseline to be established. Control system 
devices on the power system measure the power at various 
distributed geographic locations, and any change in 
measurement will be seen by the operators or the automation 
schemes, triggering an event response action. 

Based on the native attributes, the power system is perfect 
for some of the most advanced cybersecurity ever seen. Two 
simple protection methods contribute to this level of 
cybersecurity: whitelisting and deny-by-default. A whitelist 
approach is the method used to ensure that only desired 
devices, communications, and data are present on the system. 
The keys to its success are knowing what is on the system and 
knowing what each device is doing (this is the baseline). The 
deny-by-default method requires each device and 
communication to be off unless explicitly turned on for a 
purpose. In power systems, the advantage goes to engineers 
and operators when they know their system, establish a known 
good baseline, and have methods to ensure that this baseline is 
preserved. 

IV.  POWER SYSTEM ATTRIBUTES CHALLENGING  
FOR CYBERSECURITY 

The foundations of the control system architecture enable 
the industry to advance cybersecurity to greater levels than 
corporate networks, but there are specific challenges we must 
address to get there. Power systems are built with many 
embedded control and measurement devices. Embedded 
devices are not open computer platforms that allow the end 
user to install new software. The software running on these 
devices is produced by the manufacturer, and steps are taken 
to ensure that no new software can be installed. This is good 
and bad. The good part is that malware is software trying to 
install itself on these devices, so the architecture is already 
safeguarding against this. The bad part is that the end user has 
limited visibility of what software is running on the device. 
This is important for patch management procedures. The end 
user now has to establish monitoring processes for the 
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manufacturers they have purchased products from and rely on 
these manufacturers to not only alert them when security 
vulnerabilities are discovered but release the mitigations in a 
timely manner.  

Another challenge is the availability requirement for 
control systems. There is very little tolerance for downtime. 
Any reboot or decommissioning to take a product out of 
service for updates costs the company money and increases 
safety hazards. These updates need to be planned and tested 
well in advance, which will result in a slower deployment time 
between when security vulnerabilities are fixed and when they 
are deployed on the control system. The best mitigation to this 
is to select devices that accomplish the job they are intended 
to do with as small a code footprint as possible. These devices 
all work as a larger system, so many times when taking one 
device out of service for maintenance, the overall system 
suffers. 

It is good that these systems have many channels for 
monitoring, and that operators watching the system 
understand event response plans. The challenge comes with 
change control. When changes are made, alarms and logs 
generated by these changes need to be expected or operators 
will waste time investigating them, or worse, will get 
comfortable seeing alarms and not respond. Most importantly, 
these systems are built for reliability and use redundancy to 
meet extreme reliability requirements. The contingencies to 
any change must be planned and well understood before the 
change is applied. This mandates that lab testing and system 
validation testing be performed and that engineering standard 
documents inform work instructions to prevent any undesired 
operations. 

V.  MALWARE PROTECTION ARCHITECTURES 
 There are four common means of protecting a system from 

malware that we look at in this paper: blacklisting, 
whitelisting, mandatory access control (MAC), and rootkit 
prevention. 

A.  Blacklisting  
Blacklisting is the traditional approach used in corporate 

environments to protect computing resources. In this 
environment, systems change frequently to support corporate 
requirements. Blacklisting works well in these environments 
because updates are easily managed and automated. When 
new malware is detected, a signature is created and all of the 
clients receive the new signature. Blacklisting has a long 
history and has been shown to work reasonably well in many 
cases. The signatures are stored in large proprietary databases 
that are updated regularly with the newly detected signatures. 
Because new signatures are created regularly, a system with a 
recently updated signature database must scan all files and 
processes on the device in order to check for possible 
infections it did not previously know about. 

B.  Whitelisting 
 Whitelist anti-malware creates a signature for all of the 

allowed software on a system and assumes that the system 

will rarely change. This means that programs cannot be 
installed or modified without updates to the whitelist. 
Whitelist protection is fairly unexplored because it is difficult 
to manage in corporate environments. There are also two 
kinds of whitelist anti-malware. In some systems, the whitelist 
can be modified in the field by entering a password. This type 
of system is used in some corporate environments. The other 
way to use whitelist anti-malware is to cryptographically sign 
the files with a public and private key pair and keep the 
private key elsewhere. This type of system is more difficult to 
update because any updates have to be signed before they can 
be brought out into the field. It is more secure in the field 
because the secret protecting the whitelist security is not kept 
on the device being secured.  

C.  Mandatory Access Control 
MAC has a lot of support in the open source community 

and has a strong backer in the National Security Agency 
(NSA). MAC works by segregating applications into separate 
domains of execution with very specific permissions granted 
to those domains. This is in contrast to discretionary access 
control (DAC), which is the default system used by most 
operating systems. Fig. 1 shows that with DAC systems, 
permission levels lower on the list have access to anything 
above them. Kernel can access root and root can access 
anything user specific. While the kernel still has access to 
anything in user space with MAC, each user space application 
is segregated into separate domains that all have limited, 
specifically granted permissions to each other. This narrows 
the scope of an exploit, limiting its reach to only the 
permissions the original domain had. Before, if the root layer 
was compromised, the entire user space was compromised.  

 
Kernel

Root

User

User Space

DAC

Kernel

User Space

MAC

 
Fig. 1. DAC and MAC Protection Architectures 

D.  Rootkit Prevention 
Rootkit prevention is the newest and most unexplored area 

of malware protection. It works by attempting to ensure that 
drivers and kernel modules come from a trusted source and, if 
not, preventing their use entirely. Drivers and kernel modules 
can both circumvent many other security measures because of 
their access to the kernel or operating system. Some rootkit 
prevention systems also attempt to verify that system calls 
have not been modified or interfered with. Adding a hook, a 
piece of code that runs when another function is called, to a 
system call is a common means of getting a rootkit into the 
kernel, and it is exceptionally difficult to detect. 



4 

 

VI.  EVALUATING SECURITY OF MALWARE TECHNOLOGY 
Each of the previously described methods that are used to 

protect a system from malware has advantages and 
disadvantages. 

A.  Blacklisting Benefits and Drawbacks 
Blacklisting is a reactive approach. It suffers from zero-day 

vulnerabilities because of this, but it does have the advantage 
of experience. It also benefits from the fact that specific 
attacks can be countered once a new signature is created. The 
biggest disadvantage, however, comes from the requirement to 
update the blacklist antivirus signature database on a regular 
basis in order to maintain its effectiveness. This is a poor 
design in an embedded system where updates are costly and 
infrequent. As mentioned previously, when a signature 
database is updated, a scan of the system must be performed to 
ensure that an infection that was previously undetectable is 
now detectable. The problem, though, is that embedded 
systems generally perform a specific task, often with real-time 
constraints. They are generally not engineered with occasional 
central processing unit (CPU) spikes and I/O-intensive disk 
scans in mind. This means that simply updating the signature 
database could degrade the ability of an embedded system to 
perform its main function for a period after the install. These 
limitations make blacklist anti-malware unsuitable for use in 
embedded systems. 

B.  Whitelisting Benefits and Drawbacks 
Whitelist anti-malware maximizes safeguards while 

minimizing the administrative overhead in purpose-built M2M 
infrastructures. Whitelist malware protection is optimized for 
control systems instead of corporate information systems 
because of the reduced change management requirements on 
control systems. When there are frequent changes in what 
each devices does, whitelist malware protections become 
administratively burdensome. Each time an update is made to 
the system, an update must be made to the whitelist signature 
database as well. This is cost prohibitive in corporate 
environments, where updates to software are frequent. 
However, in an embedded system, updates to software are 
infrequent and it is not infeasible to include updates to the 
whitelist signature database when updates are made. In fact, it 
is often the case that updates to software in an embedded 
system are done via firmware image updates that can include 
the whitelist signature updates as well. The strong suit of 
whitelist anti-malware is that it does not require periodic 
updates to keep up with recent malware activity and does not 
suffer from zero-day exploits, except those against the 
whitelist anti-malware software itself.  

Another weakness of whitelist anti-malware is that it 
cannot perform checks on running software. Once a piece of 
software has been loaded into memory, whitelist anti-malware 
can no longer say anything meaningful about its integrity. 
This means that a whitelist anti-malware solution cannot 
protect against malware that exploits things like buffer 
overflows, except to contain the exploit to only the running 

process that was exploited. Whitelist anti-malware does 
prevent an infection that has been persisted to disk from 
running. 

C.  MAC Benefits and Drawbacks 
MAC takes a different approach to security than that of 

either whitelist or blacklist anti-malware. Instead of 
attempting to block the execution of a program, it attempts to 
constrain the reach of running software. All resources on a 
system are placed in a predefined domain and domains are 
then given specific access to other domains.  

There are many MAC implementations, but the most 
common MAC systems are AppArmor and Security-Enhanced 
Linux (SELinux), both of which provide a similar result when 
properly configured. Individual executables are limited to the 
minimum set of permissions they need to do their job. This 
means that an exploited process will have limited reach and 
will be less likely to corrupt a system or prevent it from 
performing its primary function.  

The downside to MAC is that it is very difficult to 
configure correctly, and mistakes in the configuration may not 
be detectable without a significant design effort. Fortunately, 
the effort of setting up MAC for an embedded system falls to 
the company creating the firmware, and they generally have 
the information required to correctly configure MAC. In the 
corporate environment, MAC is much more difficult to 
configure because small changes in the system can be difficult 
to adapt to in the MAC policy. Another problem with MAC is 
that it makes no attempt to verify the integrity of the process 
being placed into a domain. This means that an exploit that 
can modify the file system can persist its infection and perhaps 
spread by infecting other executables on the system, 
increasing its reach over time. 

D.  Rootkit Prevention Benefits and Drawbacks 
Rootkit prevention provides yet another approach to 

securing a system. Generally speaking, operating systems are 
divided into two segments: the user space and the kernel 
space. User space tools are kept secure largely by software 
running in kernel space. Requests for access to all resources 
on a device go through the kernel, so it is the logical place to 
provide security. However, the kernel can be compromised, so 
a layer of security to attempt to detect these types of attacks, 
called rootkits, is needed.  

Rootkit prevention is difficult at best because there is no 
other layer managing and monitoring the kernel, so the kernel 
must attempt to monitor itself. There are two common kinds 
of rootkit preventions. The first one attempts to verify that 
syscalls from user space to the kernel are not tampered with 
and the other attempts to verify that drivers and kernel 
modules that are loaded into the system are not malicious. The 
second kind is a form of whitelist anti-malware for drivers and 
kernel modules. Something similar is already implemented in 
Microsoft® Windows® systems, but not in Linux® systems, by 
default. The first type, however, is more difficult and is the 
subject of current research.  
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VII.  LAYERING MALWARE PREVENTION TECHNOLOGIES 
All of the malware prevention technologies we analyzed 

have strengths and weaknesses. A solution we identified to 
prevent the weaknesses from being exploited is to layer 
malware prevention technologies. As mentioned, a whitelist 
antivirus system cannot prevent runtime exploitation of things 
like buffer overflows. Layering on MAC to limit the scope of 
access that an exploited running application has is a good 
solution. MAC has no concept of integrity when placing a 
particular binary into a domain and granting it the permissions 
associated with that domain, so whitelist anti-malware should 
be layered on to prevent modified binaries from loading. 
Neither whitelisting nor MAC can detect a compromised 
kernel, so rootkit prevention technology should be added as 
another layer to mitigate these vulnerabilities.  

By layering these technologies, we found that a secure 
system that is compatible with an embedded environment can 
be provided. This solution provides the best level of integrity 
of the software running on the embedded system, and the 
reach of attacks can be minimized. Also, the layered solution 
provides ample warning of attempted infections so additional 
measures can be taken outside of the embedded system. If an 
attack is detected against an embedded system, the network 
firewall can be hardened to stop that attack in particular and 
then forensic data can be gathered on the attack and the 
affected systems can be patched and updated. 

VIII.  LONG-TERM ADMINISTRATION 
Long-term administration of an embedded system running 

blacklist anti-malware requires frequent signature updates. 
Regular updates must be pushed to the embedded system and 
regular scans must be made to ensure infections do not already 
exist that were not previously known about. Device burden is 
also a large problem. As previously mentioned, regular system 
scans must be performed. These scans create a large, irregular 
burden to disk I/O and to the CPU. Recent measurements 
show that up to 95 percent of the CPU processing power can 
be consumed during a scan. 

Long-term administration of a system using whitelist 
antivirus depends on the environment. In a corporate 
environment, where software is updated very regularly, the 
administration of whitelist anti-malware would be time- and 
cost-prohibitive. However, in an embedded system, 
administration is minimized and only needs to be done when 
the embedded system itself is updated, which is generally not 
often. Additionally, the maintenance of the whitelist generally 
would fall to the firmware provider, therefore decreasing the 
required maintenance further. An embedded system running 
whitelist anti-malware should require no intervention between 
firmware updates for a device owner. 

Another consideration in long-term administration is 
burden to the system. The whitelist anti-malware system we 
tested saw a 15 percent increase to system boot time but only 
had a 0.5 percent increase in the time to complete a task 
during runtime. The reason for a large impact to boot time but 
a smaller impact to general running time is that the whitelist 
anti-malware we tested uses cryptographic signatures to verify 

integrity but also caches integrity lookups. This means that at 
first boot, the system must run cryptographic analysis on 
every executable, but after an initial check has been done, the 
CPU burden decreases. In our tests, SELinux showed only a 
0.5 percent increased burden overall. SELinux has no 
cryptographic security, so it adds little burden. The rootkit 
prevention software we tested, a variation of the program 
described in [2], showed an overall 5 percent increased 
runtime burden. All told, this provided a system with about 
20 percent increased boot time and 6 percent increased 
runtime burden. Because all of these times are constant, they 
are easy to account for in an embedded system in contrast to 
blacklist anti-malware, which has inconsistent burden on a 
system. 

IX.  CONFIGURATION MANAGEMENT 
Another interesting benefit of whitelist anti-malware is that 

it can be used to protect system configuration. Any embedded 
system will have configuration files that are not modified in 
the field. Things such as boot order and the disk to be 
mounted are set up in the firmware and never modified by the 
end user. By modifying the system binaries that use those 
configuration files and having them request integrity scans of 
their configuration files, the configuration integrity can be 
guaranteed. We call this voluntary scanning. Because the 
individual executables have had their integrity verified, it can 
be guaranteed that they will voluntarily scan their 
configuration. Then, all that must be done is to create 
signatures for the various unchanging configuration files on 
the system, and the same whitelist anti-malware that protects 
the system executables and libraries can be extended to protect 
configuration and scripts.  

Fig. 2 shows the general flow of whitelist integrity 
verification and voluntary scanning. An executable is loaded 
into memory from disk at the request of another process or 
user. The whitelist anti-malware automatically scans the 
executable to verify its integrity before it is allowed to be 
placed into executable memory. Once the application has 
loaded, it then attempts to load its configuration files. Because 
it has been modified to include voluntary scanning by the 
whitelist anti-malware system, it first requests that the 
whitelist system scan the configuration file to verify its 
integrity. If the configuration file has integrity, the executable 
is notified and continues to load its configuration. 

Shell Executable Whitelist Anti-Malware

Load Executable
Automatic Scan

Allow

Load

Voluntary Scan

Allow

 
Fig. 2. Whitelist Integrity Verification and Voluntary Scanning 
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X.  COMPLIANCE CONSIDERATIONS FOR NERC CIP 
VERSIONS 3 AND 5 

NERC CIP from its inception recognized that devices need 
to have malware protections in place. The specific technology 
is not mandated, but the need for it is and the policies and 
procedures to keep the technology updated are mandated. 
NERC CIP Version 3 is specific to the device and states that 
every critical cyber asset (CCA) needs malware protection, 
and if the device cannot provide this, a technical feasibility 
exception (TFE) must be submitted. This was a huge 
generator for TFEs because many of these devices were 
embedded, so the end user could not install malware 
protection software. 

NERC CIP Version 5 also requires malware protection and 
the procedures to keep it updated, but applies it to the system 
instead of the individual devices. This allows more freedom in 
the type of technology to select, and network-based 
technology can cover clients that do not have the capabilities 
to run malware protection. 

For embedded devices, it is up to the manufacturer to 
provide the solution, either in the device or the system 
solution recommendations. When the whitelist malware 
protections discussed in this paper are implemented, the 
compliance to NERC CIP is accomplished. A small number of 
update procedures are required, keeping the operational costs 
low. 

XI.  CONCLUSION  
Control systems are a very important area of focus for 

cybersecurity, and current malware protection technologies 
are not ideal in that environment. However, with the proper 
application of various anti-malware techniques such as 
whitelisting and deny-by-default, a control system can be 
reliably secured. This paper shows that control systems are an 
ideal candidate for cybersecurity.  

Future research is still needed into rootkit protection to find 
ways to secure the kernel further and constrain exploits to the 
smallest area possible. 

Control system owners reduce the total cost of ownership 
and improve cybersecurity by selecting technology from 
manufacturers investing in anti-malware solutions with 
whitelist architectures. 
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