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Abstract—A global shortage of conventional fuels and high 
costs have led major energy market players toward the greater use 
of renewable energy sources. The Kingdom of Saudi Arabia 
(KSA), which has a major share in the oil market, has started 
working to integrate solar-based electric power into the national 
grid, enabling KSA to move toward eco-friendly and cheaper 
electricity while also maintaining a large share of the oil market.  

This paper discusses a practical technique for harvesting the 
maximum power from a prospective, large photovoltaic (PV) 
system, also known as Solar Park, in KSA. The idea is based on 
tracking the maximum power point from the nonlinear output 
characteristics of the PV system. An intelligent technique, 
adaptive neuro-fuzzy inference system (ANFIS), is used to build 
the maximum power point tracking (MPPT) controller that is 
tuned to extract the maximum power from the PV system under 
different ambient conditions. A small test system has been 
developed and simulated using a real-time digital simulator 
(RTDS), dSPACE, and MATLAB/Simulink to demonstrate the 
effectiveness of the proposed technique in comparison with the 
conventional algorithm of incremental conductance. 

I. INTRODUCTION 
Of the various renewable energy sources available, solar 

energy has proven to be the most promising and reliable. A 
photovoltaic (PV) system provides the most direct method to 
convert solar energy into electrical energy without any rotating 
electrical machinery. In 2011, more than 69 GW of PV power 
were installed worldwide with a generation capacity of 85 TWh 
per year [1]. Given the ongoing global oil crisis, the importance 
of producing electrical energy from solar power has been 
recognized in the Middle East, especially the Kingdom of Saudi 
Arabia (KSA). A research report published in 2011 determined 
that if KSA does not take serious measures to harvest solar 
energy, it will become a net energy importer by 2038 [2].  

A Global Horizontal Irradiation map based on the period 
from 1999 to 2011 shows that the mean solar power potential 
of KSA is 2,200 kWh/m2 [3]. As of 2012, KSA had only 
0.003 GW of installed solar capacity; however, KSA decision 
makers realized the need and potential of their country and laid 
out plans to install 24 GW of renewable energy by 2020 and 
54 GW by 2032, based primarily on solar energy [4]. For KSA 
to shift from conventional energy resources to solar energy, 
their solar plants must be built efficiently so as to extract the 
maximum possible electric power out of the solar energy. 

The output characteristics of a PV array are highly nonlinear 
and have one peak point called the maximum power point 
(MPP). This optimum point is vulnerable to changes in 
irradiation and temperature, and these conditions vary 

constantly over time, which leads to the MPP changing. 
Therefore, MPP tracking (MPPT) controllers are used to trail 
the optimum point and to harvest the maximum possible power 
from the PV array. 

Many MPPT methods, online and offline, have been 
presented in the literature, and a comprehensive comparison of 
these method is provided by [5] and [6]. These works identify 
serious drawbacks in the identified online methods, such as 
slow tracking of the MPP, fluctuations around the MPP in the 
steady state, and a failure to track the MPP in rapidly changing 
atmospheric conditions. All of these factors cause a 
considerable amount of power loss. The problem of tracking in 
rapidly changing conditions has been solved by incremental 
conductance, which works on the principle of incrementally 
comparing the ratio of instantaneous conductance with the 
derivative of conductance [7]. However, this method has 
tradeoffs similar to other online methods. 

Offline methods include open-circuit voltage, short-circuit 
current, and artificial intelligence-based (AI-based) methods 
[8] [9]. Open-circuit voltage and short-circuit current are the 
simplest and most accurate methods, but they are unable to 
provide the true MPP because of the approximations they 
employ. AI-based methods are the most efficient methods 
because AI has the ability to deal with nonlinear systems [10]. 
Particle swarm optimization as an intelligent technique has 
been employed to find the MPP and reduce the fluctuations in 
the steady state [11]. A fuzzy inference system (FIS) can be 
used to fuzzify the rules of the hill climbing method [12], and 
an artificial neural network (ANN) is employed in [13]. All of 
these works demonstrate a substantial improvement in tracking 
the MPP; however, none of them completely eliminate the 
problems. 

A new AI technique proposed in [14] is believed to have 
better performance than existing AI methods. It combines 
attributes of FIS and ANN to create a powerful AI technique 
known as adaptive neuro-fuzzy inference system (ANFIS) [15]. 
To build an ANFIS-based MPPT controller, the major 
challenge lies in gathering a large amount of training data. 
Actual field data for training an ANFIS-based MPPT are used 
in [16]; however, several problems are associated with the data 
(i.e., it does not cover a wide dynamic range, it is only 
appropriate for a particular geographical location, and 
gathering the large amount of data required for better ANFIS 
performance is a very time-consuming task). An easier method 
for obtaining training data is by simulating the PV model. In 
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[17], a working ANFIS-based MPPT controller is shown with 
a single-stage power converter topology (i.e., with the inverter 
only). 

In this paper, a novel MPPT controller is proposed and 
developed based on the ANFIS with training data extracted 
from a precise PV model. Unlike in [17], a two-stage topology 
is used to provide flexibility in designing the control 
architecture because this offers more control variables and 
multiple control objectives can be achieved. A two-stage 
scheme also offers further advantages by providing a constant 
dc-link voltage to the inverter that is especially beneficial 
during temperature variations because temperature changes 
affect the PV output voltage considerably. The proposed 
controller hybridizes the principles of FIS and ANN. Testing 
results show that the proposed ANFIS-based MPPT controller 
can overcome the shortcomings of conventional methods and 
can track the MPP in a shorter time with fewer fluctuations. The 
effectiveness of the proposed ANFIS-based MPPT controller is 
shown experimentally by using real-time digital simulator 
(RTDS) technologies to simulate a PV system in real time and 
by using dSPACE to act as the proposed ANFIS-based MPPT 
controller.  

Section II of this paper describes the electrical modeling of 
PV panels and a PV array based on a five-parameter model. The 
proposed ANFIS-based MPPT controller is explained in 
Section III. The experimental setup is described in Section IV, 
and the results and discussion are in Section V. Section VI 
concludes the paper. 

II. PV SOLAR PARK MODELING 
A. PV Panel Modeling 

This study uses an efficient five-parameter PV model, as 
shown in Fig. 1. 
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Fig. 1. Equivalent electric circuit of a PV device 

This model requires the values of the following five 
unknown parameters: 

IL is the light-generated current. 
I0 is the reverse saturation current. 
RS is the series resistance. 
RSH is the shunt resistance. 
a is the diode-modified ideality factor. 

Using Kirchhoff’s current law, the following relationship is 
found: 
 L D SHI I – I – I=   (1) 
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In these equations, I and V represent the current and voltage 
generated from the PV panel, respectively. These 
characteristics of the PV panel are governed by the five 
parameters previously defined (IL, I0, RS, RSH, and a). When the 
values of these parameters are known, (2) can be solved using 
an efficient numerical technique, like the Newton-Raphson 
method. With different atmospheric conditions, these 
parameters have different values that can be calculated using 
the following model translational equations: 
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where: 
S is the solar radiation of the PV panel. 
TC is the temperature of the PV panel. 
µI,SC is the coefficient of the short-circuit current 
(provided by the manufacturer).  
NS is the number of cells in the panel (provided by the 
manufacturer).  
EG is the band-gap energy of the PV cell material.  
C = 0.0003174 [8].  

Quantities with the subscript ref represent their values at the 
standard test condition (STC). 
B. PV Array Modeling 

Large PV power stations are composed of series- and 
parallel-connected PV panels to increase PV power output. The 
output current relationship of a PV array having NSS series-
connected and NPP parallel-connected PV panels can be given 
by (9) and (10). 
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SS SH
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The relationship of PV array parameters with the PV panel 
parameters is given in [16] and shown in Table I. 
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TABLE I 
ARRAY PARAMETER VALUES IN RELATION WITH PANEL PARAMETERS 

Panel 
Parameter 

Modified 
Panel Array 
Parameter 

Model 
Parameter 

Modified 
Model Array 

Parameter 
VOC VOC• NSS IL IL • NPP 
ISC ISC • NPP I0 I0 • NPP 

VMP VMP • NSS RS RS • (NSS/NPP) 
IMP IMP • NPP RSH RSH • (NSS/NPP) 
n n • NSS a a • NSS 

III. PROPOSED ANFIS-BASED MPPT CONTROLLER 

A. ANFIS Structure and Learning Process 
ANFIS is based on a Sugeno-type FIS hypothesis. It 

possesses the learning capabilities of neural networks to 
improve the performance of an intelligent system by means of 
a priori information. ANFIS creates a fuzzy system and tunes 
the parameters of the membership function by using certain 
input-output data sets. Like a neural network, ANFIS also has 
a network-type structure and maps the input-output data set 
using the parameters of fuzzy membership functions. Fig. 2 
demonstrates a simple ANFIS architecture based on the two-
rule Sugeno system with two inputs (x and y) and a single output 
(F). 
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Fig. 2. ANFIS structure 

Various learning methods have been proposed [17]. The 
method used in this study is based on a hybrid learning 
algorithm that employs a combination of back propagation and 
least-squares estimation (LSE) to optimize the premise and 
consequent parameters [13]. This method uses two pass 
learning algorithms: a forward pass using LSE and a backward 
pass using back propagation. 

B. Application of ANFIS for MPPT 
Because the output characteristics of a PV system are highly 

nonlinear, AI techniques are widely used to improve the 
efficiency of MPPT controllers. Fuzzy logic can transform 
linguistic and heuristic terms into numerical values and 
numerical values into linguistic terms using membership 
functions and fuzzy rules. A neural network can map the input-
output nonlinear functions, but it does not have a heuristic 
nature. Combining FIS with ANN to build an ANFIS system 

balances the shortcomings of one system with the advantages 
of the other. 

To design an MPPT controller using ANFIS, the first task is 
to gather the input-output data set for training the system. These 
training data are generated using the PV model developed in 
[18]. A step-by-step data generation process is illustrated in the 
flowchart shown in Fig. 3. 

Initialization
PV Panel Data From Data Sheet

Array Size NSS, NPP

Parameter Estimation at STC
IL, I0, RS, RSH, and a

Modify Parameters for PV Array
Use Table I

Initialize Training Parameters
NMAX, TMIN, TMAX, SMIN, SMAX

Start

Stop

Generate Random Operating Condition
Temperature: TMIN < T < TMAX
Irradiation: SMIN < S < SMAX

Calculate Parameter Values at Given 
Operating Condition

Use Equations 3 Through 8

Solve Equation 2 Using 
Numerical Method 
Newton-Raphson

Store Value of VMP Against Given Ambient 
Condition

Yes

No

Training Data Generation

N = N + 1

N > NMAX

 

Fig. 3. Proposed method to generate input-output data set for ANFIS 
training 

The first step in developing the data set is to estimate the 
values of the five unknown parameters for the PV panel under 
consideration. These values are then transformed for the PV 
array using Table I. After that, the following training 
parameters are initialized: 

NMAX is the number of training data points. 
TMIN is the minimum temperature. 
TMAX is the maximum temperature. 
SMIN is the minimum irradiation. 
SMAX is the maximum irradiation. 

TMIN/TMAX and SMIN/SMAX represent the ranges of 
temperature and irradiation, respectively, and can be specified 
for the geographical location where the PV array is installed. 
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Fig. 4. PV system equipped with the proposed ANFIS-based controller

The arrangement of the proposed ANFIS-based MPPT 
controller is shown in Fig. 4. The inputs of the proposed 
controller are the ambient conditions (i.e., the irradiation and 
temperature) and its output is the reference voltage (VREF), 
which is normalized using the dc-link voltage (VDC). The 
normalized reference voltage (VREF, norm) is fed back to the 
voltage control loop. The proportional integral (PI) controller 
maintains the output voltage of the PV array (VPV) to the 
reference optimal voltage by adjusting the duty ratio of the 
dc-dc converter, resulting in maximum power extraction. 

IV. HARDWARE-IN-THE-LOOP SETUP 
An RTDS and a dSPACE board were used to create a 

hardware-in-the-loop experimental arrangement to measure the 
performance of the ANFIS-based MPPT controller. 

The RTDS employs parallel processing to analyze 
electromagnetic transients in real time with high accuracy and 
quality. In this study, it was used to emulate a complete PV 
installation (i.e., solar park), including the PV array, dc-dc 
converter, PI controllers, and dc-link capacitor. Because the 
process of MPPT involves the continuous switching of the 
dc-dc converter, the RTDS is a good option for its analysis. It 
is equipped with two Giga-Transceiver (GT) cards (GT 
Analogue Output [GTAO] and GT Analogue Input [GTAI]) 
used to make the hardware-in-the-loop setup with the MPPT 
controller. 

The dSPACE board is a digital signal processing 
microcontroller based on a floating point processor, and the 
proposed ANFIS-based MPPT controller is designed and 
implemented over it. It also contains analog input (ADC) and 
analog output (DAC) interfaces to connect with the RTDS. 
These interfaces convert the signals from analog to digital and 
digital to analog, respectively. Fig. 5 shows the block diagram 
of the complete hardware-in-the-loop experimental setup. 

As stated previously, irradiation and temperature are the 
inputs for the proposed MPPT controller. These signals are 
taken from the RTDS GTAO card and provided to the dSPACE 
board as an analog input. The ANFIS-based MPPT processes 
these inputs and generates a set point of VREF as an output. This 
set-point analog signal is wired to the RTDS using the GTAI 
card and is used by the PI regulator in the RTDS to produce the 
desired duty cycle for the dc-dc converter. 

RTDS
(PV System 

Model)

Host PC for RTDS and dSPACE
RSCAD Software MATLAB/Simulink

ANFIS-Based 
MPPT Controller
(dSPACE Board)

ADC

DAC

Input to 
Controller

Output From 
Controller

GTAO

GTAI

 
Fig. 5. Hardware-in-the-loop block diagram 

V. CONTROLLER VALIDATION 

A. PV Solar Park Specification 
The solar park was emulated by the RTDS and used to test 

the effectiveness of the ANFIS-based MPPT controller. The PV 
array comprises 20 parallel-connected and 50 series-connected 
PV panels (NPP = 20 and NSS = 50), and its specification is 
shown in Table II. 

TABLE II 
SPECIFIED PV PANEL PARAMETERS AT STC 

Panel 
Parameters 
From Data 

Sheet 

Panel 
Parameter 

Values 

Estimated 
Model 

Parameters 

Estimated 
Model 
Values 

VOC (V) 21.7 IL(A) 3.35 
ISC (A) 3.35 I0 (A) 1.7053e-05 
VMP (V) 17.4 RS (Ω) 0.00477 
IMP (A) 3.05 RSH (Ω) 3.9601e+04 

n 36 a 1.78044 

B. ANFIS-Based MPPT Controller Design 
The design of the ANFIS-based MPPT controller required 

an input-output data set. In this study, it was generated using an 
efficient PV model, as discussed previously. In the process of 
generating the data set, the selection of the training parameters 
was vital because they have a direct impact on the performance 
of the controller. In this study, the training parameters were 
NMAX = 1000, TMAX = 80°C, TMIN = –20°C, SMAX = 2000 W/m2, 
and SMIN = 0 W/m2. These diverse and dynamic ranges of 
irradiation and temperature enable the controller to perform 
well even under uncertain and extreme atmospheric conditions. 
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Generalized bell membership functions were used to build 
the proposed controller in MATLAB/Simulink. The efficiency 
of various membership functions was compared using the 
training root-mean-square error (RMSE), and three 
membership functions were selected. A total of 300 epochs 
were used for ANFIS training, which decreased the RMSE to 
0.8, as shown in Fig. 6. 
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Fig. 6. RMSE versus epochs for the ANFIS-based MPPT controller 

C. Results and Discussion 
A performance comparison was carried out with a 

conventional MPPT controller using the incremental 
conductance technique. The experimental setup detailed in 
Section IV was used to conduct this test in which the irradiation 
level of the PV solar park was disturbed and the performance 
of both MPPT methods (conventional and proposed) was 
compared. In this test, the irradiation level was increased from 
low (500 W/m2) to normal (1,000 W/m2) to analyze the 
effectiveness of the controllers under a drastic change in 
environmental conditions. Fig. 7 shows the PV curve for 
normal and low irradiation at the solar park. 
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Fig. 7. PV curve under normal and low irradiation 

An RTDS-based nonlinear time-domain simulation was 
performed with the proposed and conventional MPPT 
controllers. For the conventional method (incremental 
conductance), a fixed perturbation step size was used and was 
selected based on a tradeoff between speed in the transition 
state and oscillations in the steady state. 

The solar park power output (PPV) using both controllers is 
shown in Fig. 8. It shows that the proposed controller has less 
oscillation and can reach the steady state earlier than the 
conventional method. Fig. 9 shows the PV solar park output 
voltage (VPV), current (IPV), and duty cycle the for dc-dc 
converter. These figures and results demonstrate the 
effectiveness of the proposed controller versus a conventional 
controller. 
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Fig. 8. PV solar park output power 
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Fig. 9. PV solar park voltage (a), current (b), and duty cycle (c) 

From these experimental results, it can be inferred that the 
proposed controller is faster than the conventional controller in 
a transitional state and has less fluctuation during a steady state. 
These factors result in less power loss and more power output 
from the solar park. 

Software simulation was also carried out for the same system 
in a MATLAB/Simulink environment, and these results were 
compared with the experimental results to validate the 
performance of the proposed controller. Fig. 10a shows the PV 
solar park output power (PPV) and compares the simulation and 
experimental results for the MPPT using the proposed  
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controller. Similarly, Fig. 10b and Fig. 10c show comparisons 
of the solar park output voltage (VPV) and current (IPV), 
respectively. All of these figures show the similarity between 
the experimental and simulation results and validate the 
accuracy of the proposed controller. 
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Fig. 10. Comparison of experimental and simulation results of solar park 
power output (a), voltage (b), and current (c) 

VI. CONCLUSION 
The use of a real-time experimental setup and the analysis 

of the obtained results clearly demonstrate the efficiency of the 
proposed technique. Although, the technique was analyzed 
using a prototype setup, the modular nature of PV panels allows 
for the use of the proposed technique for large solar parks. The 

proposed technique can be used at the initial stages of a project 
to identify the parameters for the MPPT controller and later on 
for monitoring the performance of the controller and adjusting 
the parameters as needed to ensure that maximum energy is 
harvested from the solar array throughout the year. 

The need for KSA to shift from conventional oil-based 
energy to solar power requires that the installed solar parks be 
able to extract the maximum electrical energy. The proposed 
technique can help energy experts meet this requirement by 
making appropriate decisions before the installation of the solar 
parks. This will reduce the likelihood of poor efficiency after 
project completion. 
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