Evaluating Machine Transients Using Electromagnetic Torque From Relay Events

D. Haas and D. Finney
Schweitzer Engineering Laboratories, Inc.

Presented at the 14th International Conference on Developments in Power System Protection
Belfast, United Kingdom
March 12–15, 2018
Evaluating machine transients using electromagnetic torque from relay events

D. Haas*, D. Finney*

*Schweitzer Engineering Laboratories, Inc., 2350 NE Hopkins Court, Pullman, WA 99163 USA, derrick_haas@selinc.com

Keywords: Air-gap torque, machine transients, event report data.

Abstract

Power system events (such as starting a motor), a fault on the motor supply, or a switching event (such as the transfer of a motor from a primary to an alternate source) all expose a motor to transients. The electromagnetic torque response can be used as a measure of the impact of an event on the motor. A very large torque during a switching event can help identify improper switching controls or even the need to inspect a motor for damage. Motor torque calculated during normal motor starts and transfers can be trended to identify developing problems. While measuring the mechanical torque on the shaft of the machine can be challenging, it is possible to calculate the electromagnetic torque or air-gap torque directly from the motor terminal voltage and stator current. This paper discusses how electromagnetic torque can be calculated from oscillographic event report data obtained from digital motor protection. Several example cases are shared.

1 Introduction

This paper summarizes the results from a previous publication on the same topic [1]. In 1990, Ojo published the results of an Electric Power Research Institute-sponsored study that describes several methods for calculating torque pulsations from terminal measurements for synchronous motors during starting [2]. The calculated values were compared with measurements on a test motor with good results. In this paper, we focus on the modified volt-second-ampere (MVSA) method. The method is generally applicable to induction machines and can be used to accurately calculate instantaneous torque for a wide variety of events, including an external fault or a motor bus transfer. The calculations are simple enough to implement in a spreadsheet or similar software tool. Using this method, data captured from a motor start can be used to calculate the electromagnetic torque produced by the motor. These data can then be compared with torque transients from other events.

2 Calculating electromagnetic torque from electrical quantities

To understand the basis of the MVSA method, we refer to the general equations for an induction machine in the direct-quadrature-zero (DQ0) reference frame [3] [4].

\[v_{dq} = R_s \cdot i_{dq} + \frac{\omega}{\omega_b} \psi_{ds} + \frac{p}{\omega_b} \psi_{qs} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{qs} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{qs} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[v_{ds} = R_s \cdot i_{ds} - \frac{\omega}{\omega_b} \psi_{qs} + \frac{p}{\omega_b} \psi_{ds} \]
\[T_e = \psi_{ds} \cdot i_{dq} + \psi_{qs} \cdot i_{ds} \]

In (1) through (7) \(v, i, \) and \(\psi \) are instantaneous values of voltage, current, and flux linkage, respectively; \(r \) is resistance; and \(p \) is the derivative operator. All quantities are in per unit (pu). The subscripts \(d, q, \) and \(0 \) refer to direct-, quadrature-, and zero-axis quantities. The subscripts \(s \) and \(r \) refer to stator and rotor quantities. Finally, \(\omega \) is the radian frequency of the reference frame, \(\omega_b \) is the radian frequency of the rotor, and \(\omega_b \) is the base radian frequency. We include all seven equations for completeness; however, we use only (1), (2), and (7). Note that the flux linkage is in terms of reactance rather than inductance.

In this section, we work with DQ0 quantities because this is how machine equations are presented in most references. Later in the paper, we carry out the MVSA calculations using abc quantities because this saves several processing steps.
We can use a DQ0 transformation to directly calculate the stator currents i_{qs} and i_{ds} in (7) from the motor terminal current, i_{abc} [3]. However, the flux linkages (ψ_{ds} and ψ_{qs}) are not directly available. Rearranging (1) and (2) we get:

\[
\begin{align*}
\psi_{qs} &= \omega_b \cdot \int (L_{qs} \cdot i_{qs}) \\
\psi_{ds} &= \omega_b \cdot \int (L_{ds} \cdot i_{ds})
\end{align*}
\]

The terms $\omega \cdot \psi$ds and $\omega \cdot \psi$qs in (8) and (9) are often called the speed voltages. They are a general consequence of transforming an inductance from the abc frame to the DQ0 frame. Physically, they represent a cross-coupling between the q and d axes. The speed voltage term in each equation contains ω. This value is in per unit and is zero in the steady state (i.e., when the reference frame is stationary) and close to zero otherwise. If we turn now to the first two product terms on the right-hand side of (8) and (9), we see that both terms contain ω_b. This term has a value of 377 radians per second in a 60 Hz system. Because $\omega_b >> \omega$, the speed voltages can safely be dropped from (8) and (9). This simplifies the calculations with virtually no loss in fidelity. For this paper, we carry out a large number of simulations to confirm this assertion.

We can now rewrite (8) and (9) as:

\[
\begin{align*}
\psi_{ds} &= \omega_b \cdot \int (L_{ds} \cdot i_{ds}) - DC_d \\
\psi_{qs} &= \omega_b \cdot \int (L_{qs} \cdot i_{qs}) - DC_q
\end{align*}
\]

Here DC_d and DC_q are one-cycle averages from the prefault data given by (14) and (15), where n is the number of samples in one cycle of data.

\[
\begin{align*}
DC_d &= \frac{\sum_{i=0}^{n} \psi_{ds}}{n} \\
DC_q &= \frac{\sum_{i=0}^{n} \psi_{qs}}{n}
\end{align*}
\]

The process is equivalent to finding a constant of integration. Finally, torque is calculated using the values of ψ_{ds} and ψ_{qs} calculated from (10), and i_{qs} and i_{ds} from (7).

For analysis and simulation, we use a model of a 1,000 horsepower (hp) motor connected to a power system through a circuit breaker. During model execution, we open the breaker, allow the motor to run down, then reclose the breaker when the angle across the breaker has reached a specified value. This sequence exposes the motor to a torque transient. The air-gap torque is available as a state variable from the model.

Fig. 1 shows the results of a simulated motor start for the model. The red trace shows the torque produced by the model, and the yellow is the torque calculated using the previously described method.

Fig. 1. Simulated motor start at $t = 0$ seconds.

We can investigate the impact of initialization with the help of our model. In Fig. 2 and Fig. 3, we show the errors introduced in the calculation if the integration is not correctly initialized. Fig. 4 compares the calculated and actual values of ψ_{qs}. A significant dc component is evident.
2.2 Impact of sampling rate

Because we are interested in calculating torque from an event capture, it is useful to look at the impact of sampling rate on the accuracy of the calculation. We begin again with the model and downsample the voltage and current to 16 and 8 samples per cycle (SPC) before the torque calculation. These rates are representative of those commonly available in digital motor protection relays.

Fig. 4 is a close-in view of the first peak torque. For this event, the error in peak torque at the first peak is 1.6 percent at 16 SPC and 8.1 percent at 8 SPC.

2.3 Impact of stator resistance

Next, we consider the impact of stator resistance. This is the only motor parameter that impacts the torque calculation. It is relatively easy to obtain and does not vary with motor speed. However, it does have a temperature dependence. The temperature coefficient of copper (α) is 3.9×10^{-3} per degree Celsius. If we consider a worst-case temperature rise of 55°C, we can calculate the resistance change as follows:

$$\frac{\Delta R_s}{R_{amb}} = \alpha \Delta T = 3.9 \times 10^{-3} \times 55 = 21.5\%$$

(16)

Our model of Fig. 1 has a stator resistance of 0.01117 pu. In Fig. 5, we show an event and the corresponding model torque where the stator resistance has increased by 21.5 percent, compared with a calculated torque where the resistance at ambient is used and a calculated torque where resistance is not included at all ($R_s = 0$).

We can make several observations. In the prefault, there is no ripple in either calculated value. This is because the current is small. Comparing the calculated and model post-fault values, we note a sustained 60 Hz ripple that is not evident in the model torque. Both calculated values are relatively accurate for the first peak, but the errors are much larger thereafter. For this event, the error in peak torque at the first peak is −1.8 percent using $R_s = R_{amb}$ and −10 percent for $R_s = 0$.
The protective relay that captured the event may also measure the motor temperature. In this case, the measured temperature could be used along with (16) to correct the resistance and thereby improve the calculation accuracy.

2.4 Impact of current transformer (CT) saturation

We investigated the impact of CT saturation by adding a C200 CT and C100 CT to the model. The details of the CTs are shown in Table III of the appendix of [1]. Fig. 6 compares the calculated torques using each CT with the model value.

Note that both calculated values are accurate at the first peak but overestimate the value of subsequent peaks.

In Fig. 7, we show the A-Phase currents for this test. This phase had the high peak magnitude and the largest degree of CT saturation. We can see that both the C200 and C100 CTs do a reasonable job in the first half cycle but later in the event, CT saturation acts to attenuate the dc component. This has a big impact on the torque calculation later in the event. Inspection of the waveforms can usually identify significant CT saturation.

2.5 Impact of core saturation

We now turn to saturation of the iron core in the motor itself; namely, the iron in both the stator and rotor. For brevity’s sake, the results are not shown, but the simulations indicate that core saturation does have a small impact. The error in the first peak is 3.6 percent.

3 Total errors

In the previous analysis, we showed individual impacts on the accuracy of the torque calculation. As a final test, we included all factors described previously and ran a batch of cases for two types of events: faults at the machine terminals (128 cases) and out-of-phase reclose events (180 cases). For faults, we varied the load, the point-on-wave, the fault type, and the fault resistance. For out-of-phase reclosing, we varied the load and the reclose angle. Earlier we noted that resistance errors could be significant. We therefore ran the test for two values. The results are shown in Table I. Note that the maximum error can exceed 40 percent. The cases with the largest errors are primarily those that have CT saturation in the first half cycle. As shown in Fig. 6, CT saturation tends to cause torque overestimation.

<table>
<thead>
<tr>
<th>Stator Resistance Error (%)</th>
<th>First Peak Torque Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terminal Faults</td>
</tr>
<tr>
<td>5</td>
<td>3.76</td>
</tr>
<tr>
<td>20</td>
<td>3.86</td>
</tr>
</tbody>
</table>

Table I: First peak average and maximum torque errors including all factors.
4 Examples

In the previous section, we used simulations to characterize sources of error. In this section, several real-world cases are analyzed. For these events, the electromagnetic torque results shared were calculated using the phase quantities rather than DQ0 quantities. Note that the results are the same for both cases, but for the sake of brevity, we only share the results of the calculation based on the phase currents and voltages. As pointed out in Section I, the equations were provided as DQ0 quantities to match the existing published literature and most motor analysis texts. Calculating torque using the phase quantities directly is computationally more efficient because it does not require any transformations from phase to DQ0 quantities.

4.1 Example I – Motor bus transfer in lab

This next example is from a staged reclose on a small 10 hp motor in a university lab. A simplified single-line diagram of the motor and connected system is shown in Fig. 8. The motor was loaded at approximately half of rated mechanical load during the switching event. The contactor closed on the motor when the motor residual voltage and the supply voltage were approximately 90 degrees out of phase. The small motor physically “jumped” during the severe switching event. While many of the machine parameters for this motor are known, the stator resistance was not known at the time of the test.

If we vary the stator resistance as before, we can see the results in Fig. 10. The initial peak torque values following the switching event are all very close regardless of which value of stator resistance we use. The maximum is 9.74 pu with Rs at 0, and the minimum is 8.96 pu with Rs at 0.02 pu. Knowing the exact value of stator resistance or measuring it can help narrow down more precisely how much air-gap torque is produced during this event.

This out-of-phase reclose on the motor caused a tremendous amount of stress on the small machine. It should also be noted that removal of dc from the voltage signals was not required in this case—only a removal of the “dc flux” to properly initialize the integration.

4.2 Example II – Real-world motor bus transfer

This last example involves an event report captured during the transfer of a 13.8 kV auxiliary bus in a power plant from the primary to an alternate source. The load of a 1,750 hp induction motor was transferred. The event report was a 16 SPC resolution event, where the voltages were from an open-delta PT connection. As shown in the appendix, the torque equation can be calculated from phase-to-phase voltages. A result of the torque calculation is shown in Fig. 11. Like all of our examples, the stator resistance is an unknown quantity for this motor, so a value of 0.01 pu for Rs is assumed again.

There is a large amount of oscillation in the calculated torque during the preswitching or prefault portion of the event. If we take a closer look at the flux signals (in particular, the flux calculated for the VAB voltage in Fig. 12), we notice a linear decay. This is because there is a small dc component present in the voltages measured by the relay. Just as before, if we remove the dc component of the voltages, we end up with a calculated torque in Fig. 13.
Fig. 12. Calculated flux from VAB.

Fig. 13. Motor torque from auxiliary bus transfer after removing dc.

As before, we can adjust the assumed value of R_S to see its impact on the torque calculation in Fig. 14.

We know that R_S is not zero because all motors have some stator resistance. Because that plot leads to a large amount of oscillations in the torque signal, we neglect that graph. A value of R_S of 0.02 pu is fairly large for a medium-voltage motor of this size. Because that point also leads to large oscillations in the torque calculation, it is shown more for illustration in Fig. 14. A value of R_S at 0.005 pu yields the least amount of oscillation in Fig. 14. If we refine our values of R_S further using data from similar sized machines at similar voltage levels, we can see in Fig. 15 that the variation in torque is much less. Knowing even an approximate value for R_S can help refine the torque calculation.

Fig. 14. Torque vs. R_S.

5 Conclusion

In this paper, we illustrate a method for the calculation of electromagnetic torque directly from motor terminal measurements. We also identify and quantify several potential sources of error. An error in stator resistance produces the most significant errors, but this can be mitigated to a large degree using field measurements and engineering judgement. We demonstrate the method using field data and identify additional problems and solutions associated with data capture. The method is a valuable tool for assessing the impact of all types of transients on the health of a motor.

Acknowledgements

The authors would like to thank Dr. Normann Fischer for sharing his knowledge, experience, and enthusiasm about rotating machine transient analysis and modeling.

References

Fig. 15. Torque with updated values for R_S.