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Abstract—This paper describes two different categories of 
impedance-based double-ended fault-locating methods used in 
transmission systems. The first category includes methods that use 
local currents and voltages and only remote currents. The second 
category includes methods that use both local and remote currents 
and voltages. This paper analyzes the accuracy and limitations of 
known time-synchronized double-ended fault-locating methods 
and proposes two new methods. These new methods are 
computationally efficient and improve transmission-line fault 
locating. 

In long overhead lines or in underground cables, the shunt 
capacitance draws sufficient current to affect the accuracy of the 
fault location estimation when traditional impedance-based fault-
locating equations are used. Using the π equivalent model, we can 
take shunt capacitances into consideration; however, this paper 
illustrates why this model is not adequate for estimating fault 
locations. Instead, considering the distributed nature of the 
transmission line gives more accurate fault-locating results. The 
equations to model the distributed nature of transmission lines 
include complex hyperbolic or exponential terms, as do the fault-
locating equations, making them computationally inefficient. For 
this reason, this approach has not been considered for real-time 
applications. 

This paper derives computationally efficient expressions for 
estimating fault locations that are suitable for implementation in 
digital protective relays. The complex hyperbolic or the 
exponential terms are precalculated based on the line parameters 
and are used as constants when the fault-locating algorithm is 
triggered. The new proposed methods have significantly higher 
accuracy in determining fault locations than the methods that 
neglect the charging current or use a lumped parameter model to 
account for the charging current. This paper summarizes the 
results for fault location estimation by using test cases obtained 
from Electromagnetic Transients Program (EMTP) simulations. 

I. INTRODUCTION 
The synchronized double-ended fault-locating methods with 

local measurements and remote currents described in [1] and 
[2] do not consider the shunt capacitance of the line. As per [3], 
for short lines (<50 miles) we can ignore the effects of the shunt 
capacitance; however, for medium length (50 to 150 miles) and 
long length lines (>150 miles), we should consider shunt 
capacitances, which can be modeled as lumped or distributed 
elements.  

Depending on the type of fault-locating method, the shunt 
capacitance effects can be reduced or eliminated. Some relays 
use the π transmission line model and compensate for the 
capacitance currents at local and remote ends. The π equivalent 
model for long transmission lines can also be used [3] [4]. 
However, when using this method, it is difficult to accurately  

estimate the shunt capacitance current compensation under 
fault conditions because the voltage profile is no longer flat (as 
it is during steady-state conditions). Instead, we can inherently 
consider shunt capacitances in the transmission line equations 
with the use of the distributed line model. In this paper, we 
analyze the root causes affecting the accuracy of estimated fault 
location and propose a new computationally efficient 
algorithm. 

For the double-ended fault-locating method with local and 
remote voltages and currents, [5] describes the impedance-
based fault locating method based only on negative-sequence 
networks. Because the negative-sequence voltages are less than 
the positive-sequence voltages, [5] assumes the impact of 
negative-sequence capacitance currents to be negligible. 
However, this paper illustrates that ignoring capacitance can 
create errors in the fault location estimation, especially with 
lines that have high total shunt capacitances. 

Reference [6] uses long transmission line equations to 
determine the fault location. With the use of the distributed line 
model, the equations inherently consider shunt capacitances. 
However, the algorithm comprises computation of complex 
hyperbolic terms for all the samples in the fault window. This 
may not be efficient to run in a digital relay. This paper 
proposes an efficient algorithm that does not require 
computation of complex hyperbolic terms in run time. 

All the simulation results presented in this paper are for an 
A-phase-to-ground fault with fault resistance, Rf = 10 Ω, unless 
specified otherwise. Although the proposed equations for fault 
locating described in this paper are for A-phase-to-ground fault, 
with slight modification, we can apply them to different types 
of faults. We use ATPDraw for modeling the two-machine 
system; the details of which are in the appendix. We consider a 
transmission line of 300 miles with transposition cycle length 
of 30 miles. We model a shunt reactor at the end of the line to 
compensate for 40 percent of the positive-sequence susceptance 
of the line. The proposed methods for fault locating have no 
implications on transmission lines with shunt reactors if the 
reactor’s currents are subtracted from its respective line 
currents. All the methods analyzed and described assume that 
this subtraction takes place. 

II. DOUBLE-ENDED FAULT-LOCATING METHODS WITH 
LOCAL MEASUREMENTS AND REMOTE CURRENTS 

Consider a simplified single-line representation of a 
transmission line which ignores shunt capacitances with a 
single line-to-ground (SLG) fault, as shown in Fig. 1. The fault  
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location for such faults is estimated by equating the faulted 
phase voltage to the sum of the voltage drop of that phase from 
the relay to the fault point and the voltage at the fault point [1].  
 = +L LF FV V V  (1) 

In terms of total fault current (IF) through the fault resistance 
(RF), (1) can be written as: 
 = +L LF F FV V I R  (2) 

Because the fault resistance (RF) is not known, it is 
eliminated by multiplying both the sides of (2) by the conjugate 
of the estimated fault current (IF_est

*). By equating imaginary 
parts on both sides, we get: 

 * * *
_ _ _Im[ ] Im[ ]= +L F est LF F est F F F estV I V I I R I  (3) 

Ideally, *
_Im[ ] 0=F F F estI R I , 

 * *
_ _Im[ ] Im[ ]=L F est LF F estV I V I  (4) 
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Fig. 1. Simplified single-line representation of a transmission system with 
an SLG fault. 

For eliminating the fault resistance from (2), it is not 
necessary to use IF_est

* as a multiplying factor; any phasor that 
has a conjugate angle of the total fault current angle can be used. 

By solving (3), we can determine the accurate fault location 
provided that the following are true: 

• The voltage drop from the relay to the fault point (VLF) 
is calculated accurately and 

• The fault current angle (∠IF_est) is estimated accurately 
Subsections A and B evaluate these two constraints through 

known methods. 

A. Traditional Takagi Method 

1) Accuracy of a Calculated Voltage Drop From the 
Relay to Fault Point 

The traditional Takagi method ignores the shunt capacitance 
of the line. In this method, the relay-to-fault point voltage drop 
in terms of sequence currents and sequence impedances is given 
as follows [7]. 

 0 1
1 1 2 0 0

1

( ) ( )
  −

= + + +     
L L

Relay-Fault L L L L L
L

Z Z
V mZ I I I I

Z
  (5) 

where: 
Z1L is the positive-sequence impedance of the line-per-
unit length. 
Z0L is the zero-sequence impedance of the line-per-unit 
length. 
m is the fault location from the local relay in miles or 
kilometers. 

Equation (5) holds true if the sequence currents measured by 
the relay are the same until the fault point. As shown in Fig. 2, 
currents that result from the shunt capacitance elements of the 
line would be subtracted from the sequence currents measured 
by the relay. However, because this method completely ignores 
shunt capacitance, the relay introduces error in the estimation 
of the voltage drop from the relay to the fault point when using 
(5). 
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Fig. 2. Detail sequence domain network for an SLG fault. 
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Faults that are near to the relay do not have much difference 
between sequence currents measured by the relay and those 
going into the fault. For such faults, we can expect less error in 
estimating the voltage drop. The same can be seen from 
simulation results in Fig. 3. The error in the magnitude of the 
voltage drop increases drastically for fault locations beyond 
100 miles, and the shunt capacitance effect becomes noticeable. 
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Fig. 3. Estimated voltage drop from relay-to-fault point for the traditional 
Takagi method: (a) magnitude error and (b) angle error. 

2) Accuracy of the Estimated Fault Current Angle 
In the traditional Takagi method, to estimate the fault current 

angle, we use differential negative-sequence current [8]. Fig. 2 
illustrates that the negative-sequence current measured at the 
local and remote relays ( 2 2 and L RI I ) is not the same as the 
currents flowing into the fault ( 2 2 and FL FRI I ) because of the 
shunt capacitances. However, with some assumptions there can 
be almost no angle difference between the total fault current 
and the differential negative-sequence current, as explained 
later. 

Consider a negative-sequence network for an unbalanced 
fault, as shown in Fig. 4. Let the local negative-sequence source 
impedance be 2SZ  and the negative-sequence shunt 

capacitance impedance-per-mile be 2CapZ . 

I2RI2L

+

V2L

–

+

V2R

–

+ –

I2L1 I2L2 I2R1I2R2

ICL1 ICL2 ICR1ICR2

Z2RZ2S

Remote 
Relay

Local 
Relay

 

Fig. 4.  Negative-sequence network for an unbalanced fault. 

Assuming certain values for the parameters in Fig. 4, 

2 2 2 2 2 2,  88 ,  90= ∠ = ∠ = ∠ − 

L L S S Cap CapI I Z Z Z Zδ  

Because the source impedance angle is close to 90° (88° in 
this case) and the magnitude of the negative sequence shunt 
capacitance impedance-per-mile (|ZCap2|) for overhead lines is 
very high (~100–150 kΩ), the magnitude of the current through 
the shunt-capacitance element (|ICL1|) would be low and would 
almost be in phase with the incoming negative-sequence current 
(I2L), as expressed by (6). The low-magnitude shunt-
capacitance element current (ICL1), which is almost in phase 
with the much larger negative-sequence current (I2L), would 
make little difference in the angles between I2L and I2L1. 

 2 2 2 22
1

2 2 2

( 88 )

90

− ∠ +
= = ≈ ∠

∠ −





L S L SL
CL

Cap Cap Cap

I Z I ZV
I

Z Z Z

δ
δ  (6) 

The same is true for remote-end shunt-capacitance current if 
the remote-source impedance angle is close to 90°. Similarly, 
the currents in the next shunt-capacitance elements from local 
and remote ends (ICL2 and ICR2) are in phase with the incoming 
currents (I2L1 and I2R1) provided that the negative-sequence 
transmission-line angle is close to 90°. Thus, if the negative-
sequence impedance angles of line, local, and remote sources 
are close to 90°, the differential negative-sequence current 
angle and the total fault current angle would almost be the same, 
although there would be differences in their magnitudes. 
However, this kind of system configuration is not always 
practical. For a nonhomogeneous system, we can expect more 
error in the estimation of the fault current angle, which might 
result in significant error in the estimated fault location. Fig. 5 
illustrates the simulation results for the difference between the 
differential negative-sequence current (3I2L + 3I2R) and the total 
fault current for homogeneous and nonhomogeneous systems.  
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Fig. 5. Estimated magnitude and angle error of the fault current for the 
traditional Takagi method: (a) magnitude error and (b) angle error. 
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For a homogeneous system, we consider (7). 

 2 288.13 ,  88∠ = ∠ = ∠ = 

Line S RZ Z Z  (7) 

For a nonhomogeneous system, we consider (8). 

 2 284 ,  88.13 ,  65∠ = ∠ = ∠ =  

S Line RZ Z Z  (8) 

3) Accuracy of Fault Locating 
In the traditional Takagi method, the error in calculating the 

voltage drop from the relay to the fault point is noticeable for 
fault locations greater than 100 miles, as illustrated in Fig. 3. 
For a nonhomogeneous system, the estimated fault current 
angle may have errors up to a degree or more. As expected, 
these errors are reflected in the calculated fault location, as seen 
in Fig. 6.  
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Fig. 6. Fault-locating errors by using the traditional Takagi method in a 
nonhomogeneous system. 

B. Takagi Method With Shunt-Capacitance Current 
Compensation 

For medium to long overhead lines, there is adequate 
standing differential current under steady-state conditions 
because of the shunt capacitance, which might trigger sensitive 
differential elements; thus, this capacitance current needs to be 
compensated. Some relays compensate it by subtracting the 
estimated capacitance currents by using the π equivalent model 
from the measured currents at local and remote ends. See Fig. 7 
for this representation. The shunt conductance (G) is assumed 
to be negligible and is therefore ignored. 

IRIL

+

VL

–

IL’ IR’ZL

ICL ICR

Y
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Y
2 VSRVSL

Remote 
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Local 
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+
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–
 

Fig. 7. Single-line representation of a π equivalent transmission system. 

As shown in Fig. 8, under steady-state conditions, we can 
assume phase voltages at 1 pu along the line. The solid red 
arrows represent the actual shunt-capacitance charging currents 
from the local side up to half the length of the line, whereas the 
dashed green arrows represent the same from the remote side. 
The voltage angle might change along the line because of load 
flow, which might introduce small errors in the estimation of 
shunt capacitance currents at both the terminals, but most of the 
actual shunt-capacitance current of the line would be 
compensated. 

m = 0

|VL| = 1 pu

m = 0.5 m = 1

|VR| = 1 pu

 
Fig. 8. Illustration of voltages and shunt-capacitance currents under steady-
state conditions from local and remote terminals in the phase domain. 

The differential current after compensation under steady-
state conditions would be approximately zero, as shown in (9). 

 ( ) ( ) ( ) 0′ ′  = + = − + − ≈ DIFF L R L CL R CRI I I I I I I  (9) 

1) Accuracy of the Calculated Voltage Drop From the 
Relay to the Fault Point 

Under fault conditions, the local and remote faulted-phase 
voltage profiles are not flat throughout the line. See Fig. 9 for 
this representation of a bolted SLG fault at 0.3 pu of the line 
length. The solid red triangle represents the actual capacitance 
current to be compensated in the faulted phase, whereas the 
solid red arrows represent the estimated charging current 
compensated from the local side. The estimated compensation 
is clearly greater than what should have been compensated for. 
This results in erroneously estimating the faulted-phase voltage 
drop from the relay to the fault point when using (10). 

 0 1
1 0

1

( )
  −′ ′= +     

L L
Relay-Fault L L L

L

Z Z
V mZ I I

Z
 (10) 

where: 
IL' is the compensated faulted-phase current at the local 
relay. 
I0L' is the compensated zero-sequence current at the local 
relay. 

m = 0

 1 pu

m = 0.5l m = 1

|VLA|

|VRA|

m = 0.3l  

Fig. 9. Illustration of voltages and shunt-capacitance currents from local and 
remote terminals for a bolted SLG fault at 0.3 pu in the phase domain. 

We can expect that if the fault is closer to the relay with low 
fault resistances, the faulted-phase voltage at the relay would 
be low. Thus, the actual and the estimated capacitance currents 
from that end would also be low enough that there would be 
negligible difference between them. In such cases, the voltage 
drop from the relay to the fault point estimated using (10) would 
mostly be accurate. On the other hand, if the fault is farther 
away from the relay, or if the fault resistance is such that the 
faulted-phase voltage at the relay does not drop much, there 
would be noticeable difference between the actual capacitance 
current and the estimated ones, thus erroneously estimating the 
faulted-phase voltage drop from the relay to the fault point. 
Voltage-drop errors from using the π equivalent model of the 
transmission line are shown in Fig. 10. 
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Fig. 10. Estimated voltage drop from the relay to the fault point by using the 
π equivalent of transmission line and distributed transmission line models: 
(a) magnitude error and (b) angle error. 

As per [4], for long transmission lines under steady-state 
conditions, we should use the modified π equivalent model. The 
line parameters are corrected to ZL' and Y', which are functions 
of the line propagation constant ( ' '= LZ Yγ ), defined as [3]. 

 sinh ′ =   
γ

γL L
lZ Z

l
 (11) 

 
tanh

2
2 2

2

 
′  =  

  

γ

γ

l
Y Y

l
 (12) 

Under the fault conditions illustrated in Fig. 9, even if the 
line is modeled as π equivalent of the distributed transmission 
line, the estimated charging currents would still have errors 
compared to the actual charging currents for the same reasons 
previously explained. However, as Z1L and Z0L in (10) would be 

reduced using (11) by the factors 1

1

sinh 
  

γ
γ

l
l

 and 0

0

sinh 
  

γ
γ

l
l

 

respectively, the error of the voltage drop from the relay to the 
fault point would be reduced. The voltage error would not be 
the same as it would have been if the line was modeled as π 
equivalent of transmission line (see Fig. 10 for details).  

2) Accuracy of the Estimated Fault Current Angle 
As in the traditional Takagi method, this version of the 

Takagi method with shunt-capacitance current compensation 
uses differential negative-sequence current for estimating the 
fault-current angle. The only difference is that this current is  

compensated for the shunt-capacitance currents from both ends. 
As explained in Section II.A.2, for a homogeneous system with 
source impedance angles and a transmission line angle close to 
90°, the differential negative-sequence current angle would be 
almost the same as the fault-current angle. This is because the 
compensated negative-sequence capacitance currents would 
almost be in phase with the negative-sequence currents 
measured by the relay. However, this is not true for a 
nonhomogeneous system. See Fig. 11 for simulation results of 
the difference between the actual fault current and the fault 
current estimated using compensated differential negative-
sequence current (3I2DIFF) calculated using (13) for a 
nonhomogeneous system. 

Interestingly, even for a nonhomogeneous system (see 
Fig. 11 for details), there is less error in estimating the fault 
current as compared to the traditional Takagi method. For 
illustration purpose, consider a bolted SLG fault at 0.3 pu. 
Fig. 12 illustrates the negative-sequence voltage profiles along 
with the negative-sequence shunt capacitance currents from 
local and remote terminals for this fault. In this method, the 
differential negative-sequence current is given by (13). The 
compensated-differential current (I2DIFF) is calculated by 
subtracting the summation of the estimated capacitance 
currents (I2CL + I2CR) from the local and remote currents (I2L + 
I2R) of the negative-sequence network. 

 ( ) ( )2 2 2 2 2 = + − + DIFF L R CL CRI I I I I  (13) 
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Fig. 11. Estimated fault-current angle using the traditional Takagi, shunt-
capacitance compensation, and hyperbolic shunt-capacitance compensation 
methods for nonhomogeneous systems: (a) magnitude error and (b) angle 
error. 
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m = 0

 0.2 pu

m = 0.5l m = 1

|V2L| |V2R|

m = 0.3l  
Fig. 12.  Illustration of voltages and shunt-capacitance currents from local 
and remote terminals for a bolted SLG fault at 0.3 pu in a negative-sequence 
network. 

In Fig. 12, the solid red area represents the actual 
capacitance current from the local side whereas the red arrows 
represent the estimated compensated charging current. In this 
case, the estimation is greater than the actual charging current. 
On the remote side, the dashed green area represents the actual 
capacitance current from the remote side whereas the green 
arrows represent the estimated charging current compensated. 
In this case, the estimation is less than actual. However, in a 
homogeneous system, the summation of estimated capacitance 
currents is almost equal to the summation of actual capacitance 
currents from local and remote ends. Because the summation of 
the capacitance currents is used in (13), the calculated I2DIFF is 
almost the same as actual I2DIFF. 

In a nonhomogeneous system, under fault conditions, the 
local and remote negative-sequence voltage angles would be 
different from each other. Also, they change along the length of 
the line. This affects the shunt currents angle along the line. But, 
because the magnitudes of negative-sequence voltages are 
lower, the shunt currents are even lower compared to the 
currents flowing into the fault. Thus, the overall error in 
estimating fault current is less when using (13) compared to 
using uncompensated differential current (I2L + I2R). Simulation 
results show the same in Fig. 11. 

3) Accuracy of Fault Locating 
In the Takagi method with shunt-capacitance current 

compensation, if the line is modeled as π equivalent of the 
transmission line, the angle of the total fault current estimated 
has very low error, as seen in Fig. 11. However, the error in 
calculating the voltage drop from the relay to the fault point is 
noticeable for fault locations greater than 60 miles, as seen in 
Fig. 10. This error is enough to decrease the accuracy of fault 
locating as the distance to the fault location increases, as seen 
in Fig. 13. If the line is modeled as π equivalent of the 
distributed transmission line by using (11) and (12), the 
estimation of the fault current angle is almost accurate, as seen 
in Fig. 11. However, there are errors in the calculated voltage 
drop from the relay to the fault point, as seen in Fig. 10. This 
affects the fault-locating accuracy. Overall, we can see from 
Fig. 13 that there are fewer fault-locating errors using π 
equivalent of the distributed transmission line model than the 
method that uses π equivalent of the transmission line. 
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Fig. 13. Fault locating errors from using the π equivalent of the transmission 
line and distributed transmission line models. 

C. Proposed Method 

1) Approach for Determining Accurate Fault Locating 
From the two methods described in Section II, Subsections 

A and B, we see that the accuracy of fault locating is mostly 
affected by the error in the estimated voltage drop from the 
relay to the fault point. In the traditional Takagi method, fault 
locating is also affected by erroneous estimation of the fault 
current angle, especially in nonhomogeneous systems. The 
fault-current angle estimated in the Takagi method with shunt-
capacitance current compensation by using the compensated 
differential negative-sequence current is accurate for overhead 
lines. The proposed method considers the root causes of errors 
in order to improve the accuracy of calculated fault location. 

The fault voltage in sequence domain and in terms of total 
fault current (IF) can be written as (14): 

 ( )1 2 0= + + =Fault F F F F FV V V V I R  (14) 

Multiplying by a conjugate of the total fault current (IF
*) on 

both sides and taking imaginary parts, we get (15). 

 ( ) * *
1 2 0Im Im 0   + + = =   F F F F F F FV V V I I R I  (15) 

Based on Fig. 2, by using the hyperbolic equations for long 
transmission lines (which assumes line to be perfectly 
transposed) [3], we can express the fault-sequence voltages in 
terms of local sequence voltages and currents as follows: 

 ( ) ( )1 1 1 1 1 1cosh sinh= −F L L CV V m I Z mγ γ  (16) 

 ( ) ( )2 2 1 2 1 1cosh sinh= −F L L CV V m I Z mγ γ  (17) 

 ( ) ( )0 0 0 0 0 0cosh sinh= −F L L CV V m I Z mγ γ  (18) 

where: 
ZC1 is the positive-sequence characteristic impedance of 
the line. 
ZC0 is the zero-sequence characteristic impedance of the 
line. 
γ1 is the positive-sequence propagation constant of the 
line. 
γ0 is the zero-sequence propagation constant of the line. 
m is the fault location from the local relay in miles or 
kilometers. 
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Similarly, based on Fig. 2, by using the hyperbolic 
equations, we can express the total fault current accurately in 
terms of negative-sequence currents at the fault point as 
follows. 

 ( )2 23= +F FL FRI I I  (19) 

where: 

 ( ) ( )2
2 2 1 1

1

cosh sinh= − L
FL L

C

V
I I m m

Z
γ γ  (20) 

and 

 ( ) ( )2
2 2 1 1

1

cosh sinh   = − − −   
R

FR R
C

V
I I l m l m

Z
γ γ  (21) 

where: 
l is the total length of the line in miles or kilometers. 

We see in (21) that I2FR uses the negative-sequence remote 
voltage (V2R), but because only remote currents are available at 
the local relay, we cannot use (21). 

Based on Fig. 2, by using the hyperbolic equations, we can 
express the remote negative-sequence current (I2R) in terms of 
negative-sequence fault voltage (V2F) and negative-sequence 
fault current from the remote side (I2FR) as follows: 

 ( ) ( )2
2 2 1 1

1

cosh sinh   = − + −   
F

R FR
C

V
I I l m l m

Z
γ γ  (22) 

Also, applying Kirchhoff’s current law at the fault point in 
Fig. 2, we get (23). 
 2 2 2= +F FL FRI I I   (23) 

Reference [6] uses (17), (20), (22), and (23) along with 
trigonometric identities to express I2F as: 

 
( ) ( )

( )

2
2 1 1 2

1
2

1

cosh sinh

cosh

 
− + 

 =
 − 

L
L R

C
F

VI l l I
Z

I
l m

γ γ

γ
 (24) 

We can use (16), (17), (18), and (24) as the variables in (15) 
to find the fault location (m). We can express this equation as 
(25), which is an ideal expression to determine fault location 
(m) with local measurements and remote end currents. It must 
be noted that fault location (m) is implicitly defined. You can 
use an iterative approach; however, it would not be 
computationally efficient because (25) is a multiplication of 
two functions of fault location (m). Also, any approximations 
or errors in hyperbolic or measured analogs would affect the 
fault-locating accuracy. 

 ( ) ( )

*

1

Im 0
cosh

     + =    −      

CA B
l mγ

 (25) 

where: 
A is ( ) ( ) ( ) ( )1 2 1 1 2 1 1cosh sinh+ − +L L L L CV V m I I Z mγ γ  

B is ( ) ( )0 0 0 0 0cosh sinh−L L CV m I Z mγ γ  

C is ( ) ( )2
2 1 1 2

1

cosh sinh− +L
L R

C

V
I l l I

Z
γ γ  

As discussed in Section II.B.2, the compensated-differential 
negative-sequence current gives a very good estimation of the 
fault current angle. 

 ( )2 2
′ ′∠ ≈ ∠ +F L RI I I  (26) 

Using (16), (17), (18), and (26), we can write (15) as:  

 ( )( )*

2 2Im 0
 ′ ′+ + = 
 

L RA B I I  (27) 

We can use (27) to determine the fault location (m). This is 
also not a closed-loop solution, so we use an iterative approach. 
However, the expression is not as complicated as (25) and is 
comparatively efficient in computation. 

If (27) is plotted for all values of m throughout the 
transmission line, it would be zero exactly at the fault location 

provided 2 2
 ′ ′+  L RI I  gives the exact fault-current angle. 

Fig. 14 depicts the plot of the left-hand side of (27) for all 
values of m for a bolted SLG fault at 250 miles. The plot is 
almost a straight line, and thus, even with two iterations, we can 
accurately estimate fault location. The plot is expected to bend 
more for higher values of shunt capacitances, such as in cables. 
This is because the shunt capacitance element would add its 
current into the line, creating more voltage drops. 

The first iterative fault location obtained is close to the 
solution, and with the second iteration, the solution obtained 
would be accurate enough to be considered the fault location. 
For the iterative approach, we can use the Newton Raphson 
method as defined by (28). 

 ( )
( )

1
2 1

1

= −
′

f m
m m

f m
 (28) 

where: 
m1 is the initial value of the fault location. 
m2 is the next value of the fault location. 
f(m1) is the left-hand side of (27) at m1. 
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Fig. 14. Plot of the fault location equation, i.e., left-hand side of (27) for all 
values of m for a bolted SLG fault at 250 miles. 
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For the first iteration, the initial value m1 can be taken as 0. 
Thus, using (27) as 1( )f m  with 1 0=m  in (28), the first 

iterative fault location solution (FL1), substituting ( )cosh 0 1=  

and ( )sinh 0 0= , would be given as follows: 

( )( )
( )

*

1 2 0 2 2

1 *

1 2 1 1 0 0 0 2 2

Im

Im

 ′ ′+ + + 
 =

  ′ ′ + + +      

L L L L R

L L C L C L R

V V V I I
FL

I I Z I Z I Iγ γ
 (29) 

Adding and subtracting I0LZC1γ1 in the denominator of (29) 
and simplifying the equation by substituting 0 0 0=C LZ Zγ  and 

1 1 1=C LZ Zγ , we get: 

( )*

2 2

1
*

0 1
1 0 2 2

0

Im

Im

 ′ ′+ 
 =

    −   ′ ′+ +              

AL L R

L L
L AL L L R

L

V I I
FL

Z Z
Z I I I I

Z

 (30) 

Equation (30) is in the form of the fault-locating expression 
used in the traditional Takagi method. The only difference 
between the two is the conjugate multiplied in the numerator 
and denominator. In (30), the conjugate is the compensated 
differential negative-sequence current. The fault location, FL1, 
given by (30) is used in the second iteration to find FL2, which 
would be accurate enough to be considered desired fault 
location, as explained previously. 

Because the value of the fault location obtained from the first 
iteration through use of (30) would be in the known range, e.g., 
0 to 1.5 times the total line length, we can use a predesigned 
look-up table and interpolation to determine the values of the 
hyperbolic terms used in (31), which is the second iterative 
expression. With this approach, we can efficiently 
compute (31). 

 
( )( )

( )( )

*

2 2

2 1 *

2 2

Im

Im

 ′ ′+ + 
 = −

 ′ ′+ +′ ′ 
 

L R

L R

A B I I
FL FL

A B I I
 (31) 

where: 
A is ( ) ( ) ( ) ( )1 2 1 1 1 2 1 1 1cosh sinh+ − +L L L L CV V FL I I Z FLγ γ   

B is ( ) ( )0 0 1 0 0 0 1cosh sinh−L L CV FL I Z FLγ γ   

A' is 
( ) ( ) ( ) ( )1 1 2 1 1 1 2 1 1 1sinh cosh+ − +L L L L LV V FL I I Z FLγ γ γ  

B' is ( ) ( )0 0 0 1 0 0 0 1sinh cosh−L L LV FL I Z FLγ γ γ  

2) Accuracy of Fault Locating 
As per the simulation results, fault location estimated using 

the proposed method has errors less than half a mile with Rf = 
10 Ω. The calculated fault location also includes errors 
introduced by transmission line transposition. Earlier known 
methods (described in Section II, Subsection A and B) have 

larger errors, and some of them have errors in tens of miles. 
This is depicted in Fig. 15. 

–40
–30
–20
–10

0
10
20
30
40

0 60 120 180 240 300

Fa
ul

t-L
oc

at
in

g 
Er

ro
r (

M
ile

s)

Fault Location (Miles)

Traditional Takagi Method
Takagi Method Using π Equivalent Model of the Transmission Line
Takagi Method Using π Equivalent Model of the Distributed 
Transmission Line
Proposed Method

 

Fig. 15. Fault-locating errors for different methods for Rf = 10 Ω. 

The accuracy of estimating the fault location with the 
proposed method may slightly decrease with increase in the 
fault resistance because as the fault resistance increases, the 
fault voltage also increases and the small angle error of the fault 
current determined by using (13) gets multiplied with an 
increased value of the fault voltage in (27). This is depicted in 
Fig. 16. 
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Fig. 16. Fault-locating errors from using the proposed method for different 
values of Rf. 

III. DOUBLE-ENDED FAULT LOCATING METHODS WITH 
LOCAL AND REMOTE CURRENTS AND VOLTAGES 

The double-ended fault locating methods with two end 
voltages and two end currents can be more accurate than 
methods with two end currents and one end voltage because of 
the following: 

• Both the end voltages and currents are known, we can 
only use a positive- or negative-sequence network for 
fault locating. The positive- or the negative-sequence 
parameters can be accurately known for a transmission 
line and are constant if the geometry of the 
transmission line is the same. Whereas, the zero-
sequence parameters can change because of weather 
conditions or different zero-sequence return paths, 
thus decreasing the accuracy of fault location if zero-
sequence parameters are involved. 

• We only use a negative- or positive-sequence network, 
the zero-sequence mutual coupling from the parallel 
lines does not significantly affect the fault location 
estimation [5]. 
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Subsections A, B, and C further describe the known double-
ended fault-locating methods with two end voltages and two 
end currents. 

A. Impedance-Based Fault-Locating Method 
In this method, the local relay has access to voltage and 

current measurements from both terminals, and the algorithm 
ignores shunt capacitances of the line. Given a negative-
sequence network for an unbalanced fault, as shown in Fig. 17, 
fault location (m) is derived as follows. 

Z2S Z2RI2L I2Rm l – m

V2L

+

–

V2F

+

–

V2R

+

–

Remote 
Relay

Local 
Relay

 
Fig. 17. Negative-sequence network for an unbalanced fault. 

Negative-sequence fault voltage (V2F) from the local end is 
given by (32): 
 2 2 1 2= −F L L LV V mZ I  (32) 

where: 
Z1L is the positive-sequence impedance of the line per-unit 
length. 
m is the fault location from the local relay in miles or 
kilometers. 

The negative-sequence fault voltage (V2F) from the remote 
end is given by (33): 

 ( )2 2 1 2= − −F R L RV V l m Z I  (33) 

Equating (32) and (33), the fault location (m) comes out to 
(34): 

 
( )

2 2 2 1

2 2 1

 − +
=  

+  
L R R L

L R L

V V I Z l
m

I I Z
 (34) 

Graphically, the fault location given by (34) is the point of 
intersection of the negative-sequence voltage profile from the 
local end given by (32) and the negative-sequence voltage 
profile from the remote end given by (33).  

The negative-sequence shunt-capacitance currents can be 
small because the respective negative-sequence voltages are 
low compared to the positive-sequence voltages, but they can 
still impact the accuracy of fault location. This is because in the 
impedance-based fault-locating method, the fault location is the 
point of intersection of the negative-sequence voltage profiles 
from local and remote ends, which will not be the same if shunt 
capacitances are involved. These capacitance elements 
continue to add their current into the line, creating more voltage 
drop, thus bending the voltage profiles. Fig. 18 shows the local 
and remote negative-sequence voltage characteristics based on 
(32) and (33) for a fault at 30 miles in the overhead line. The 
point of intersection of these voltage characteristics is at 
37 miles, thus giving an error of 7 miles in determining the fault 
location. The errors in the case of underground cables would be 
more because of higher values of shunt capacitances. 

We can improvise the accuracy of the fault location by using 
(34) if we compensate the currents used in the equation for 
shunt-capacitance currents by using the π equivalent model of 
the distributed transmission line. However, there would still be 
error because exact capacitance current compensation requires 
knowledge of the fault location and the negative-sequence fault 
voltage (V2F), both of which are unknown. Fig. 19 illustrates 
fault-locating errors for overhead line and underground cable 
through use of (34) with and without shunt-capacitance current 
compensation. 
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Fig. 18. Negative-sequence voltage profiles through use of (32) and (33) for a fault at 30 miles: (a) voltage profiles throughout the line and (b) zoom-in 
voltage profiles. 
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Fig. 19. Fault-locating errors for different methods for Rf = 10 Ω: 
(a) overhead line (300 miles, transposition cycle of 30 miles) and 
(b) underground cable (200 miles, perfectly transposed) 

B. Fault Locating Through Use of Distributed Transmission 
Line Equations in Logarithmic Form 

Errors introduced by the shunt capacitances can be 
eliminated by using the distributed parameter transmission line 
equations. Fault location determined by this method is accurate 
because the shunt capacitances are inherently included in the 
equations. The following steps derive the expression for fault 
location (m). 

The expression for negative-sequence fault voltage (V2F) 
from the local end in exponential form is given by [3]. 

 1 12 2 1 2 2 1
2 2 2

−− +   = +      
m mL L C L L C

F
V I Z V I Z

V e eγ γ  (35) 

where: 
ZC1 is the positive-sequence characteristic impedance of 
the line. 
γ1 is the positive-sequence propagation constant of the 
line. 

The expression for negative-sequence fault voltage (V2F) 
from the remote side in exponential form is given by [3]. 

 ( ) ( )1 12 2 1 2 2 1
2 2 2

− − −− +   = +      
l m l mR R C R R C

F
V I Z V I Z

V e eγ γ  (36) 

Equating (35) and (36), the expression for fault location (m) 
in logarithmic form is given as (37). 

 
( ) ( )
( ) ( )

1

1

2 2 1 2 2 1

1 2 2 1 2 2 1

1 ln −

− − +
=

− − +

l
R R C L L C

l
L L C R R C

V I Z e V I Z
m

V I Z V I Z e

γ

γγ
 (37) 

C. Fault Locating Through the Use of Distributed 
Transmission Line Equations in Hyperbolic Form 

Because the distributed parameter transmission line 
equations can also be expressed in hyperbolic format, the fault 
location (m) in hyperbolic form can be derived as follows. 

The expression for negative-sequence fault voltage (V2F) 
from the local side in hyperbolic form is given by [3]. 

 ( ) ( )2 2 1 2 1 1cosh sinh= −F L L CV V m I Z mγ γ  (38) 

The expression for negative-sequence fault voltage (V2F) 
from the remote side in hyperbolic form is given by [3]. 

 ( ) ( )2 2 1 2 1 1cosh sinh   = − − −   F R R CV V l m I Z l mγ γ  (39) 

Equating (38) and (39), the expression for fault location (m) 
in hyperbolic form is given as (40). 

( ) ( )
( ) ( )

2 2 1 2 1 11

1 2 1 2 1 2 1 1

cosh sinh1 tanh
sinh cosh

−
 − +

=  − + 
L R R C

L C R R C

V V l I Z l
m

I Z V l I Z l
γ γ

γ γ γ
 (40) 

Equations (37) and (40) are basically the same, but they are 
in different mathematical forms. 

Considering the same example as that given in Fig. 18, (the 
fault location at 30 miles), the hyperbolic negative-sequence 
voltage profiles from the local and remote terminals obtained 
through use of (38) and (39) are plotted in Fig. 20 (indicated by 
blue lines). 

The impedance-based negative-sequence voltage profiles 
are also plotted using (32) and (33), indicated by red lines. 
Voltage profiles formed from hyperbolic equations bend 
slightly. This is because the shunt-capacitance elements 
through the line keep adding the shunt-capacitance current to 
the line, thus creating more voltage drop. 

We can determine the fault location as the intersection of the 
voltage profiles by using the distributed transmission line 
equations instead of the impedance-based method. From 
Fig. 20, we can see that the point of intersection of the 
hyperbolic voltage profiles (i.e., the fault-locating point) is 
about 0.4 miles off the actual fault location, which is 30 miles. 
This error is because of the transmission line transposition. 
Fault locating with distributed transmission line equations uses 
complex logarithmic or inverse hyperbolic equations, and using 
such equations for all the samples in the fault window might not 
be computationally efficient. For example, one way to solve 
complex logarithmic or inverse tanh functions is through series 
expansion, as expressed in (41) and (42) [9]. 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2 3 4

5 6

1 1 1
ln 1

2 3 4
1 1

                          ...
5 6

− − −
= − − + − +

− −
−

x x x
x x

x x
 (41) 

 ( )
3 5 7 9 11

1tanh ...
3 5 7 9 11

− = + + + + +
x x x x xx x  (42) 
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Fig. 20. Negative-sequence voltage profiles through use of (32), (33), (38), and (39) for a fault at 30 miles: (a) voltage profiles throughout the line and 
(b) zoom-in voltage profiles. 

Using the first six terms of the series expansions (41) and 
(42), the estimated fault location can be accurate with error up 
to a half mile. However, some fault cases might require more 
than the first six terms for accurate results. Also, using the 
above series expansions, the real-time computation would be 
inefficient because higher powers of complex numbers are 
involved for all the samples in the fault window. Thus, a 
computationally efficient algorithm is required, especially 
when run in the relay, which is explained further in 
Section III.D. 

D. Computationally Efficient Algorithm 

1) Introduction to the Computationally Efficient 
Algorithm 

The proposed computationally efficient algorithm method is 
a two-step approach. In the first step, we calculate an 
approximate fault location by using negative-sequence voltage 
profiles. In the second step, we add a predetermined correction 
factor to compensate for the fault-locating error introduced in 
the first step. A short summary of the steps is as follows: 

First, calculate the approximate fault location by using the 
following: 

• The measured negative-sequence voltages at local and 
remote terminals. These are Points 1 and 2 in Fig. 21. 

• The calculated virtual local and remote negative-
sequence voltages by using (38) and (39), substituting 
m with l (total line length). These are Points 3 and 4 in 
Fig. 21. 

• The approximate fault location—the point of 
intersection formed by the two segments (1–4 and  
2–3). This is Point 5 in Fig. 21, but because it is an 
approximate estimated fault location, it has error. 

The expression for approximate fault location is given by 
(43). 

 
( ) ( )
( ) ( )

2 1 2 1 1 2

2 1 2 1 1 2

cosh sinh
1

cosh sinh

=
− −

+
− −

approx
L L C R

R R C L

lm
V l I Z l V
V l I Z l V

γ γ
γ γ

 (43) 

Second, compensate for fault-locating error in the 
approximate fault location obtained in the first step. Do so by 
adding a predetermined correction factor (explained in Section 
III.D.2) to the approximate fault location; the resulting 
corrected fault location is the final fault location declared by the 
algorithm. 

Fig. 21 illustrates that the fault-locating error through use of 
(43) is negative when the actual fault location is 60 miles and 
positive when the actual fault location is 240 miles. This error 
can be as far as two miles (the error for cables can be greater 
because of higher shunt-capacitance values). The error is 
caused by the bend in the voltage profiles because of the shunt 
capacitances of the line and is not based on local or remote 
sources or its parameters. The bend in the voltage profiles is 
only a result of the line parameters, and it is also the only source 
of error between the approximate fault location (43) and actual 
fault location. Thus, we can determine this error by simplifying 
the local and remote sources. One way to do this is by assuming 
the same transmission line with infinite local and remote 
sources and then finding the fault-locating error for different 
fault locations. If we can calculate the error in using the 
approximate fault location equation (43), we can estimate an 
accurate fault location. We further discuss the estimation of 
error from using the approximate fault location equation (43) in 
the following section. 
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Fig. 21. Negative-sequence voltage profiles (blue lines) by using ideal hyperbolic (or logarithmic) equations for faults at: (a) 60 miles and (b) 240 miles. 

2) Correction Factor (Estimation of Error in Using the 
Approximate Fault Location Equation) 

Because the error in using (43) is based on line parameters 
and not on source parameters, we deduce a correction factor 
that uses the same transmission line parameters but assumes the 
local and remote sources to be infinite. This makes the local and 
remote negative-sequence voltages zero, as shown in Fig. 22. 
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Fig. 22. Negative-sequence network with infinite local and remote sources. 

Thus, the approximate fault location equation (43) for this 
infinite-sources system would reduce to (44). 
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Equating (38) and (39) (the negative-sequence fault voltages 
from the local and remote sides) and because V2L = V2R = 0 for 
this infinite-sources system, as seen in Fig. 22, we can find that, 
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Substituting (45) in (44), an approximate fault location with 
local and remote sources as infinite, is given by (46): 
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And the error in (46) can be expressed as follows: 
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 (47) 

where: 
m is the actual fault location from the local relay in miles 
or kilometers. 

In other words, the correction factor in (47) is the fault-
locating error for the same transmission line considered in 
Fig. 21 but with local and remote sources as infinite. We can 
precalculate the correction factor by using (47) because it is 
independent of currents and voltages. If we plot the correction 
factor by using (47) and compare it with the fault-locating error 
(of the same transmission line) caused in the actual system—
with actual local and remote sources, i.e., the actual fault 
location minus the approximate fault location found in (43)—
then the correction factor and fault-locating error are almost the 
same. Fig. 23 illustrates this. 
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Fig. 23. Fault-locating errors for a normal system and an infinite sources 
system (assuming line to be completely transposed). 
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So, once the approximate fault location is calculated by 
using (43), we add the respective correction factor (at that 
approximate fault location) to get the accurate fault location.  
This corrected fault location is given as (48): 

  |= +
approxcorrected approx mm m Correction Factor  (48) 

In (48), the hyperbolic terms used in calculating the 
approximate fault location and the correction factor are 
precalculated and do not require calculation in real time. This 
makes the algorithm efficient enough to run in a relay. 

Fig. 24 illustrates the fault-locating errors for overhead line 
and underground cable that were calculated by using (40) and 
(48). The errors seen in Fig. 24 occur because of line 
transposition. 
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Fig. 24. Fault-locating errors for different methods for Rf = 10 Ω (a) 
overhead line (300 miles, transposition cycle of 30 miles) and (b) 
underground cable (200 miles, perfectly transposed). 

IV. CONCLUSION 

A. Double-Ended Fault-Locating Methods With Local 
Measurements and Remote Currents 

In the traditional Takagi method or the Takagi method with 
shunt-capacitance current compensation for determining fault 
location, the major source of error is in the estimation of voltage 
drop from the relay to the fault point. Also, in the traditional 
Takagi method, the fault-current angle can be erroneously 
estimated from the differential negative-sequence current, 
especially for systems with positive-sequence line and source 
impedance angles not close to 90°. 

Using the compensated differential negative-sequence 
current, we can expect good estimation of the fault-current  

angle (less than a quarter degree for overhead lines). We can 
obtain a more accurate fault-current angle by using hyperbolic 
equation (24); however, the use of such expression in 
determining fault location iteratively is computationally 
inefficient. 

The proposed fault-locating method does not contain any 
hyperbolic terms for estimating the fault-current angle. Even 
though the proposed method is an iterative approach, we can 
obtain good accuracy with just two iterations. Also, with a 
predefined look-up table and interpolation for hyperbolic terms 
that are used for calculating the fault voltage, computation 
becomes efficient.  

Calculations of fault location through use of the traditional 
Takagi method are expected to be accurate for overhead 
transposed transmission lines as long as 100 miles. Beyond that 
length, the error starts increasing exponentially. With the shunt-
current compensation method, the estimated fault location error 
increases with faults beyond 60 miles. However, with the use 
of the π equivalent model for distributed transmission lines, the 
error reduces but still can be 5 miles or more. Both of the 
capacitance-compensated fault-locating methods are not 
adequate for long transmission lines. Moreover, errors in fault 
location when using these methods can be worse than the plots 
in Fig. 15 because they are dependent on line shunt 
capacitances and, to some extent, on system-impedance ratios, 
loading conditions, fault resistance, system nonhomogeneity, 
and other factors. 

For the proposed method, the accuracy of fault location 
depends only on the accuracy of the estimated fault-current 
angle, which depends on the fault resistance, shunt-capacitance 
value, and, to some extent, system nonhomogeneity. From the 
simulations, which assume transmission-line transposition 
cycle length of 30 miles, the proposed method can have fault 
location errors less than a half mile for low-fault resistances in 
nonhomogeneous systems. Though the accuracy slightly 
decreases for higher fault resistance, the error remains less than 
a mile. Whereas other methods can have larger errors, some 
even in tens of miles. 

The proposed method would not be ideal for underground 
cables because the method uses zero-sequence parameters that 
are not accurately known for underground systems. Also, 
because of higher shunt-capacitance values in cables, there may 
be errors in the fault-current angle estimation, which would lead 
to errors in the calculated fault location. 

The ultimate way to get accurate fault-locating estimates is 
by using traveling-wave fault-locating algorithms. The 
proposed method is a good compromise (a “middle ground”) 
between known traditional impedance-based fault-locating 
methods and traveling-wave fault-locating methods. It allows 
us to very accurately compensate for line shunt-capacitances 
without requiring a global time source, like GPS, by aligning 
the analogs through use of channel-based synchronization. 
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B. Double-Ended Fault-Locating Methods With Local and 
Remote Currents and Voltages 

Impedance-based methods, which neglect shunt 
capacitance, are suitable for short overhead lines. The 
fault-locating errors of this method increase with the increase 
in the total shunt capacitance of the line. The shunt capacitances  
bend the negative-sequence voltage profiles by adding shunt 
currents into the line. Therefore, for medium or long overhead 
lines, this method is prone to errors. As seen in Fig. 19, error in 
estimating the fault location can be as long as 8 miles for a 
300-mile transmission line and as long as 30 miles for a 
200-mile underground cable. 

If the negative-sequence currents used in the impedance-
based method (34) are compensated for shunt-capacitance 
currents by using the π equivalent model of the distributed 
transmission line, the errors in the estimated fault location can 
come down to less than 3 miles for both long overhead lines 
and underground cables. However, the errors can get larger 
because they depend on the correct compensation of shunt-
capacitance currents under fault conditions. For correct 
compensation, we need exact fault location and negative- (or 
positive-) sequence fault voltages, both of which are unknown. 

The logarithmic or hyperbolic form of estimating fault 
location by using (37) or (40) can be accurate. We can use the 
respective series-expansion forms (41) and (42) for estimating 
fault location. The errors can be as large as a half mile, but in 
most fault cases, the equations might require the first six terms 
or more of the series expansion, for accurate results. Using 
these expansions, real-time computation becomes inefficient 
because higher powers of complex numbers are involved for all 
the samples in the fault window. 

The new proposed method for estimating fault location 
given in (48) does not calculate hyperbolic terms in real-time 
and is more efficient than the series-expansion method. The 
proposed computationally efficient method is accurate with 
fault-locating errors shorter than a half mile for long overhead 
lines or underground cables. The errors introduced result from 
line transposition. Because only a negative- or positive-
sequence network is used, the proposed method is best suited 
for any length of overhead line or underground cable. Also, this 
method is not affected by fault resistance, loading conditions, 
system-impedance ratios, or system nonhomogeneity. 

V. APPENDIX 
Fig. 25 illustrates the system model used for simulation. 

Table I–Table III list the appropriate parameters. 

TABLE I 
LOCAL AND REMOTE SOURCE PARAMETERS 

Source Parameters Local Source Remote Source 

Line-to-Line Voltage 
(kV) 

327.75∠0° 345∠–30° 

Total Positive-Sequence 
Impedance (Ω) 

72.02∠84° 35.59∠65° 

Total Zero-Sequence 
Impedance (Ω) 

230∠77.47° 129.59∠65° 

Frequency (Hz) 60 60 

TABLE II 
OVERHEAD LINE PARAMETERS FOR LCC BERGERON MODEL 

Line Parameters Values 

Positive-Sequence Impedance per Mile (Ω) 0.5876∠88.13° 

Zero-Sequence Impedance per Mile (Ω) 1.5868∠69.67° 

Positive-Sequence Shunt Capacitance per 
Mile (nF) 

19.362 

Zero-Sequence Shunt Capacitance per 
Mile (nF) 

12.551 

Total Line Length (Miles) 300 

Transposition Cycle (Miles) 30 

Inner Radius of Phase Conductor (Inches) 0 

Outer Radius of Phase Conductor (Inches) 0.554 

DC Resistance of Phase Conductor per 
Mile (Ω) 

0.0215 

Number of Bundled Conductors per Phase 2 

Inner Radius of Shield Conductor (Inches) 0 

Outer Radius of Shield Conductor (Inches) 0.1622 

DC Resistance of Shield Conductor per 
Mile (Ω) 

1.372 

Horizontal Tower Configuration in feet 
(A—B—C—Shield1—Shield2) 

(0—24.5—49—8—41) 

Vertical Tower Configuration in Feet 
(A—B—C—Shield1—Shield2) 

(70—70—70—87.6—
87.6) 

Vertical Mid-Span Configuration in Feet 
(A—B—C—Shield1—Shield2) 

(46.67—46.67—46.67—
58.4—58.4) 

Soil Resistivity (Ω – m) 100 

Remote-Terminal Shunt-Reactor 
Inductance (H) 

3.0283 

 

 

Fig. 25. ATPDraw system model used for simulations. 
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TABLE III 
PERFECTLY TRANSPOSED UNDERGROUND CABLE PARAMETERS 

Line Parameters Values 

Positive-Sequence Impedance per Mile (Ω) 0.1328∠72.93° 

Zero- Sequence Impedance per Mile (Ω) 0.1914∠26.03° 

Positive-Sequence Shunt Capacitance per 
Mile (nF) 

187.17 

Zero-Sequence Shunt Capacitance per 
Mile (nF) 

124.78 

Total Line Length (Miles) 200 

Remote Terminal Shunt Reactor 
Inductance (H) 

0.2 
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